.
؊
ꢁ
Quantitation of ONOO from the Reaction between NO and O2
16. Burner, U., Furtmuller, P. G., Kettle, A. J., Koppenol, W. H., and Obinger,
C. (2000) J. Biol. Chem. 275, 20597–20601
17. Palazzolo-Ballance, A. M., Suquet, C., and Hurst, J. K. (2007) Biochemistry
46, 7536–7548
18. Pfeiffer, S., Lass, A., Schmidt, K., and Mayer, B. (2001) J. Biol. Chem. 276,
34051–34058
19. Gunther, M. R., Sturgeon, B. E., and Mason, R. P. (2002) Toxicology 177,
1–9
20. Wardman, P. (2007) Free Radic. Biol. Med. 43, 995–1022
21. Royall, J. A., and Ischiropoulos, H. (1993) Arch. Biochem. Biophys. 302,
348–355
22. Hodges, G. R., Marwaha, J., Paul, T., and Ingold, K. U. (2000) Chem. Res.
Toxicol. 13, 1287–1293
23. Jourd’heuil, D., Jourd’heuil, F. L., Kutchukian, P. S., Musah, R. A., Wink,
D. A., and Grisham, M. B. (2001) J. Biol. Chem. 276, 28799–28805
24. Miles, A. M., Bohle, D. S., Glassbrenner, P. A., Hansert, B., Wink, D. A.,
and Grisham, M. B. (1996) J. Biol. Chem. 271, 40–47
25. Thomas, D. D., Espey, M. G., Vitek, M. P., Miranda, K. M., and Wink, D. A.
(2002) Proc. Natl. Acad. Sci. U.S.A. 99, 12691–12696
26. Thomas, D. D., Ridnour, L. A., Espey, M. G., Donzelli, S., Ambs, S., Hus-
sain, S. P., Harris, C. C., DeGraff, W., Roberts, D. D., Mitchell, J. B., and
Wink, D. A. (2006) J. Biol. Chem. 281, 25984–25993
27. Goldstein, S., Czapski, G., Lind, J., and Mere´nyi, G. (1999) Chem. Res.
Toxicol. 12, 132–136
FIGURE 8. Proposed reaction pathways in the oxidation of CBA to COH.
.
ꢁ
between NO and O2. In this study, we used the fluorogenic
Ϫ
boronic probe, which reacts directly with ONOO , outcom-
Ϫ
peting the decomposition of ONOO into the radical products.
28. Goldstein, S., Czapski, G., Lind, J., and Mere´nyi, G. (2000) J. Biol. Chem.
275, 3031–3036
Ϫ
Our results directly prove that ONOO is the primary product
.
.
ꢁ
ꢁ
of the reaction of O2 with NO over a wide range of NO to O2
fluxes. Thus, the previously reported bell-shaped responses,
29. Quijano, C., Romero, N., and Radi, R. (2005) Free Radic. Biol. Med. 39,
728–741
.
ꢁ
30. Sikora, A., Zielonka, J., Lopez, M., Joseph, J., and Kalyanaraman, B. (2009)
Free Radic. Biol. Med. 47, 1401–1407
which do not accurately reflect the chemistry of O2/ NO inter-
action, are due to free radical-dependent oxidation and nitra-
tion of the probe molecules (tyrosine and dihydrorhodamine)
31. Kissner, R., Beckman, J. S., and Koppenol, W. H. (1999) Methods Enzymol.
301, 342–352
.
ꢁ
and reactions of probe-derived radicals with NO and O2. The
32. Du, L., Li, M., Zheng, S., and Wang, B. (2008) Tetrahedron Lett. 49,
3045–3048
ongoing research indicates that the boronate-based fluorogenic
Ϫ
probes can be used for real-time monitoring of ONOO gen-
33. Thomas, D. D., Miranda, K. M., Espey, M. G., Citrin, D., Jourd’heuil, D.,
Paolocci, N., Hewett, S. J., Colton, C. A., Grisham, M. B., Feelisch, M., and
Wink, D. A. (2002) Methods Enzymol. 359, 84–105
34. Murphy, M. E., and Noack, E. (1994) Methods Enzymol. 233, 240–250
35. Massey, V. (1959) Biochim. Biophys. Acta 34, 255–256
36. Ianni, J. C. (2003) in Computational and Fluid Solid Mechanics (Bathe,
K. J., ed) pp. 1368–1372, Elsevier Science Ltd., Oxford
37. Kirsch, M., Korth, H. G., Wensing, A., Sustmann, R., and de Groot, H.
(2003) Arch. Biochem. Biophys. 418, 133–150
eration in cellular systems (46).
REFERENCES
1. Blough, N. V., and Zafiriou, O. C. (1985) Inorg. Chem. 24, 3502–3504
2. Ferrer-Sueta, G., and Radi, R. (2009) ACS Chem. Biol. 4, 161–177
3. Goldstein, S., and Czapski, G. (1995) Free Radic. Biol. Med. 19, 505–510
4. Huie, R. E., and Padmaja, S. (1993) Free Radic. Res. Commun. 18, 195–199
5. Kissner, R., Nauser, T., Bugnon, P., Lye, P. G., and Koppenol, W. H. (1997)
Chem. Res. Toxicol. 10, 1285–1292
38. Reiter, C. D., Teng, R. J., and Beckman, J. S. (2000) J. Biol. Chem. 275,
32460–32466
6. Kobayashi, K., Miki, M., and Tagawa, S. (1995) J. Chem. Soc. Dalton Trans.
2885–2889
39. Squadrito, G. L., Cueto, R., Splenser, A. E., Valavanidis, A., Zhang, H.,
Uppu, R. M., and Pryor, W. A. (2000) Arch. Biochem. Biophys. 376,
333–337
7. Gryglewski, R. J., Palmer, R. M., and Moncada, S. (1986) Nature 320,
454–456
40. Ichimori, K., Fukahori, M., Nakazawa, H., Okamoto, K., and Nishino, T.
(1999) J. Biol. Chem. 274, 7763–7768
8. Ignarro, L. J., Byrns, R. E., Buga, G. M., Wood, K. S., and Chaudhuri, G.
(1988) J. Pharmacol. Exp. Ther. 244, 181–189
41. Lee, C. I., Liu, X., and Zweier, J. L. (2000) J. Biol. Chem. 275, 9369–9376
42. Houston, M., Chumley, P., Radi, R., Rubbo, H., and Freeman, B. A. (1998)
Arch. Biochem. Biophys. 355, 1–8
9. Palmer, R. M., Ashton, D. S., and Moncada, S. (1988) Nature 333,
664–666
10. Beckman, J. S., Beckman, T. W., Chen, J., Marshall, P. A., and Freeman,
B. A. (1990) Proc. Natl. Acad. Sci. U.S.A. 87, 1620–1624
11. Brown, D. I., and Griendling, K. K. (2009) Free Radic. Biol. Med. 47,
1239–1253
43. Beckman, J. S., and Koppenol, W. H. (1996) Am. J. Physiol. 271,
C1424–CC1437
44. Liochev, S. I., and Fridovich, I. (2002) Arch. Biochem. Biophys. 402,
166–171
12. Pacher, P., Beckman, J. S., and Liaudet, L. (2007) Physiol. Rev. 87, 315–424
13. Goldstein, S., and Mere´nyi, G. (2008) Methods Enzymol. 436, 49–61
14. Lymar, S. V., and Hurst, J. K. (1995) J. Am. Chem. Soc. 117, 8867–8868
15. Augusto, O., Bonini, M. G., Amanso, A. M., Linares, E., Santos, C. C., and
De Menezes, S. L. (2002) Free Radic. Biol. Med. 32, 841–859
45. Sawa, T., Akaike, T., and Maeda, H. (2000) J. Biol. Chem. 275,
32467–32474
46. Zielonka, J., Sikora, A., Zielonka, M., Joseph, J., Hardy, M., and Kalyanara-
man, B. (2009) Free Radic. Biol. Med. 47, S40
14216 JOURNAL OF BIOLOGICAL CHEMISTRY
VOLUME 285•NUMBER 19•MAY 7, 2010