corresponding oxazoles.7 However, fluorinated propargyl
amidines were unstable under strong basic conditions,
which often resulted in low yield. This cyclization also
could be accomplished by using a Brønsted acid;8 the yield
of 2-fluoroalkyl imidazoles was only 30%, but both long
reaction times and high temperatures were required. To
our delight, an excellent yield was obtained under mild
conditions by gold(I) catalysis via 5-exo-dig cyclization.
We envisioned that 2-fluoroalkyl imidazoles can be ob-
tainedinonepotfromfluorinatedimidoyl chlorides.9 With
Ph3PAuCl/AgSbF6 as the catalyst and CH3CN as the
solvent, an optimized yield of 87% was obtained when
the reaction was carried out at 60 °C (see Table S1 in the
Supporting Information (SI)).
of them offered the expected products in good yields.
Substrates with electron-donating groups on the benzene
ring gave good yields (Table 1, entry 2). Electron-
withdrawing groups would lead to lower yields (Table 1,
entries 4, 5, 7). Compared to the electronic effect, steric
hindrance of the substituents had little influence on the
yield (Table 1, entries 3, 6, 8). The effect of fluoroalkyl
(Rf) was also examined; substrates with ꢀCF2Br often
had lower yields, and the corresponding products decom-
posed easily (Table 1, entries 9ꢀ15). With 3-phenyl pro-
pargyl amine as the starting material, the reaction inter-
mediate of propargyl amidine underwent a 6-endo-dig
cyclization to generate 1,4-dihydropyrimidine 3r in 73%
yield (Table 1, entry 18). As we expected, nonfluorinated
imidazole 2s was obtained in moderate yield when a non-
fluorinated substrate was used (Table 1, entry 19).
In this reaction, cationic Au(I) is thought to be coordi-
nated with CꢀC triple bonds to form a vinyl-gold inter-
mediate. We tried to prepare this intermediate, and an
alkylgold(I) species 3t that differed from Hashmi’s work
was obtained.10,11 Treated 3t with protontic acid solvent
failed to generate imidazole 3b, but decomposed.
Table 1. Au(I)-Catalyzed the Formation of 2-Fluoroalkyl
Imidazolesa
We speculated that a gold(I) intermediate in the reaction
may be a zwitterionic species. Coordinated with cationic
Au(I), CꢀC triple bonds accept the attack of amidinonyl
nitrogen to afford intermediate A. Affected by Rf, A
isomerizes to the more stable imidazole B by an H-1,3
shift first. In this process, the nitrogen atom in imidazole is
protonated all the way, which favors HꢀAu (I) exchange
to give the final product imidazole 3 which is accomplished
in one pot (Scheme 1).
entry
R
R1
R2
yield/%b
1
-CF3
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
Ph
H
3a/78
3b/87
3c/89
3d/72
3e/68
3f/85
3g/68
3h/85
3i/74
3j/79
3k/79
3l/65
3m/63
3n/60
3o/76
3p/87
3q/62
3r/73c
3s/67
3t
2
-CF3
p-OCH3
o-CH3
p-NO2
p-COOEt
Naphthyl
m-CF3
o-Cl
3
-CF3
4
-CF3
5
-CF3
6
-CF3
7
-CF3
(4) (a) Yao, T.; Zhang, X.; Larock, R. C. J. Am. Chem. Soc. 2004,
126, 11164–11165. (b) Kang, J. E.; Lee, E. S.; Park, S. I.; Shin, S.
Tetrahedron Lett. 2005, 46, 7431–7433. (c) Robles-Machin, R.; Adrio, J.;
Carretero, J. C. J. Org. Chem. 2006, 71, 5023–5026. (d) Zhou, C. Y.;
Chan, P. W. H.; Che, C. M. Org. Lett. 2006, 8, 325–328. (e) Lee, E. S.;
Yeom, H. S.; Hwang, J. H.; Shin, S. Eur. J. Org. Chem. 2007, 3503–3507.
(f) Widenhoefer, R. A. Chem.;Eur. J. 2008, 14, 5382. (g) Benitez, D.;
Shapiro, N. D.; Tkatchouk, E.; Wang, Y.; Goddard, W. A.; Toste, F. D.
Nat. Chem. 2009, 1, 482. (h) Belting, V.; Krause, N. Org. Biomol. Chem.
2009, 7, 1221–1225. (i) Garcia, P.; Malacria, M.; Aubert, C.; Gandon,
V.; Fensterbank, L. ChemCatChem 2010, 2, 493.
(5) (a) Fukuda, Y.; Utimoto, K.; Nozaki, H. Heterocycles 1987, 25,
297–300. (b) Fukuda, Y.; Utimoto, K. Synthesis 1991, 975–978.
(6) (a) Hashmi, A. S. K.; Schwarz, L.; Choi, J. H.; Frost, T. M.
Angew. Chem., Int. Ed. 2000, 39, 2285–2288. (b) Hashmi, A. S. K.
Angew. Chem., Int. Ed. 2000, 39, 3590–3593.
8
-CF3
9
-CF2Br
-CF2Br
-CF2Br
-CF2Br
-CF2Br
-CF2Br
-CF2Br
-CF2H
-CF2CF3
-CF3
p-CH3
m-CH3
o-CH3
p-CF3
p-CN
p-Cl
10
11
12
13
14
15
16
17
18
19
20
o-Br
H
H
p-OCH3
H
-COOEt
-CF3
p-OCH3
AuPPh3
(7) (a) Nilsson, B. M.; Hacksell, U. J. Heterocycl. Chem. 1989, 26,
269–275. (b) Nilsson, B. M.; Vargas, H. M.; Ringdahl, B.; Hacksell, U. J.
J. Med. Chem. 1992, 35, 285.
(8) (a) Eloy, A. D. Chim. Ther. 1973, 8, 437. (b) Street, L. J.; Baker,
R.; Castro, J. L.; Chambers, M. S.; Guiblin, A. R.; Hobbs, S. C.;
Matassa, V. G.; Reeve, A. J.; Beer, M. S. J. Med. Chem. 1993, 36,
1529. (c) Pan, Y. M.; Zheng, F. J.; Lin, H. X.; Zhan, Z. P. J. Org. Chem.
2009, 74, 3148–3151. (d) Yamamoto, Y.; Gridnev, I. D.; Patil, N. T.; Jin,
T. Chem. Commun. 2009, 5075–5087.
a Reaction conditions: Ph3PAuCl (5 mol %)/AgSbF6 (10 mol %),
fluoronated imidoyl chlorides (1.0 mmol), propargyl imine (2.5 mmol),
CH3CN (3.5 mL), 60 °C. b Isolated yield. c The product is 1,4-
dihydropyrimidine.
Under the optimized conditions, a variety of fluorinated
imidoyl chlorides were tested (Table 1). This reaction has
good compatibility to various functional groups, and most
(9) Tamura, K.; Mizukami, H.; Maeda, K.; Watanabe, H.; Uneyama,
K. J. Org. Chem. 1993, 58 (1), 32–35.
(10) (a) Hashmi, A. S. K.; Weyrauch, J. P.; Frey, W.; Bats, J. W. Org.
ꢀ
Lett. 2004, 6, 4391–4394. (b) Hashmi, A. S. K.; Salathe, R.; Frey, W.
Synlett 2007, 1763–1766. (c) Weyrauch, J. P.; Hashmi, A. S. K.;
Schuster, A.; Hengst, T.; Schetter, S.; Littmann, A.; Rudoiph, M.;
Hamzic, M.; Visus, J.; Rominger, F.; Frey, W.; Bats, J. W. Chem.;
Eur. J. 2010, 16, 956–963.
(3) (a) Schuler, M.; Silva, F.; Bobbio, C.; Tessier, A.; Gouverneur, V.
Angew. Chem., Int. Ed. 2008, 47, 7927–7930. (b) Hopkinson, M. N.;
Giuffredi, G. T.; Gee, A. D.; Gouverneur, V. Synlett 2010, 18, 2737–
2742. (c) de Haro, T.; Nevado, C. Adv. Synth. Catal. 2010, 352, 2767. (d)
Wang, W.; Jasinski, J.; Hammond, G. B.; Xu, B. Angew. Chem., Int. Ed.
2010, 49, 7247–7252. (e) Qian, J.; Liu, Y.; Zhu, J.; Jiang, B.; Xu, Z. Org.
Lett. 2011, 13, 4220–4223. (f) de Haro, T.; Nevado, C. Chem. Commun.
2011, 47, 248–249.
(11) (a) Hashmi, A. S. K.; Schuster, M.; Rominger, F. Angew. Chem.,
€
Int. Ed. 2009, 48, 8247–8249. (b) Hashmi, A. S. K.; Lothschutz, C.;
€
Dopp, R.; Rudolph, M.; Ramamurthi, T. D.; Rominger, F. Angew.
Chem., Int. Ed. 2009, 48, 8243–8246.
Org. Lett., Vol. 14, No. 4, 2012
1131