96
S.W. Hunt et al. / Journal of Molecular Structure 1010 (2012) 91–97
membered ring that is produced in the bridged and chelated iso-
mers, respectively, reveals a greater number of torsional deriva-
tions in the latter isomer. The strain about the HACAPACaryl
linkages in 3c is particularly pronounced in the case of the one of
the two CH2PPh2 units. Such a scenario is akin to that used to ac-
count for the stability difference between cyclohexane and cyclo-
pentane rings [39].
found,
in
the
online
version,
at
References
[1] A.J. Deeming, S. Donovan-Mtunzi, S.E. Kabir, J. Organomet. Chem. 276 (1984)
C65.
[2] A.J. Deeming, S. Donovan-Mtunzi, S.E. Kabir, J. Organomet. Chem. 333 (1987)
253.
[3] A.J. Deeming, S. Donovan-Mtunzi, K.I. Hardcastle, S.E. Kabir, K. Henrick, M.
McPartlin, Dalton Trans. (1988) 579.
[4] S.H.-G. Ang, S.-G. Ang, W.-L. Kwik, Q. Zhang, J. Organomet. Chem. 485 (1995)
C10.
[5] S.E. Kabir, A. Miah, L. Nesa, K. Uddin, K.I. Hardcastle, E. Rosenberg, A.J. Deeming,
J. Organomet. Chem. 492 (1995) 41.
[6] W.H. Watson, B. Poola, M.G. Richmond, J. Chem. Crystallogr. 36 (2006) 123.
[7] V. Nesterov, X. Wang, B. Poola, M.G. Richmond, J. Organomet. Chem. 692
(2007) 1806.
Clearly the nature of the diphosphine ligand is important as it
relates to the energy difference in the ground-state isomers and
the activation barrier for the merry-go-round exchange. A measure
of the steric effects within the diphosphine ligand can be seen in
the reaction dynamics of the cluster Os3(CO)10[(Z)-
Ph2PCH@CHPPh2], where the two phosphine moieties are tethered
by an etheno platform. Here the chelated isomer lies 1.7 kcal/mol
lower in enthalpy than the bridged isomer, and the barrier height
(D
H–) for isomerization is on the order of 26 kcal/mol [10]. Rela-
[8] T.-W. Shiue, W.-Y. Yeh, G.-H. Lee, S.-M. Peng, J. Organomet. Chem. 692 (2007)
3619.
tive to the Os3 cluster containing the ligand (Z)-Ph2PCH@CHPPh2,
the presence of two extra hydrogens associated with the ethano
bridge of the dppe ligand leads to unfavorable steric interactions
in the chelated isomer of Os3(CO)10(PAP) and the transition struc-
ture, which in turn leads to a reduction in the overall exothermicity
of the isomerization and increases the barrier height for the con-
certed merry-go-round exchange of phosphine and CO groups.
[9] S.-H. Huang, J.M. Keith, M.B. Hall, M.G. Richmond, Organometallics 29 (2010)
4041.
[10] W.H. Watson, G. Wu, M.G. Richmond, Organometallics 24 (2005) 5431;
25 (2006) 930.
[11] W.H. Watson, B. Poola, M.G. Richmond, J. Organomet. Chem. 691 (2006) 4676.
[12] W.H. Watson, B. Poola, M.G. Richmond, Polyhedron 26 (2007) 3585.
[13] S.W. Hunt, L. Yang, X. Wang, M.G. Richmond, J. Organomet. Chem. 696 (2011)
1432.
[14] X. Zhang, S. Kandala, L. Yang, W.H. Watson, X. Wang, D.A. Hrovat, W.T. Borden,
M.G. Richmond, Organometallics 30 (2011) 1253.
[15] For a report on the X-ray structure of a tricobalt cluster containing the related
4. Conclusions
methoxy-substituted
derivative
1,2-bis(dimethoxyphosphino)-1,2-
dimethylhydrazine, see: S.G. Bott, J.C. Wang, M.G. Richmond, J. Chem.
Crystallogr. 28 (1998) 401.
[16] J.N. Nicholls, M.D. Vargas, Inorg. Synth. 26 (1989) 289.
[17] S.R. Drake, P.A. Loveday, Inorg. Synth. 28 (1990) 230.
[18] V.S. Reddy, K.V. Katti, Inorg. Synth. 32 (1989) 132.
[19] D.F. Shriver, The Manipulation of Air-Sensitive Compounds, McGraw-Hill, New
York, 1969.
[20] Bruker APEX2, SAINT, and SADABS, Bruker AXS Inc., Madison, Wisconsin, USA,
2007.
[21] A.L. Spek, PLATON: A Multipurpose Crystallographic Tool, Utrecht University,
Utrecht, The Netherlands, 2006.
[22] G.M. Sheldrick, SHELXTL, v. 2008/3; Bruker Analytical X-ray: Madison, Madison,
Wisconsin, USA, 2008.
[23] Gaussian 09, Revision A.02: M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E.
Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A.
Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J.
Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J.
Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A.
Montgomery, Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N.
Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell,
J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E.
Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann,
O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K.
Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S.
Dapprich, A. D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J.
Fox, Gaussian, Inc., Wallingford CT, 2009.
Ligand substitution in 1,2-Os3(CO)10(MeCN)2 in the presence of
the bis(phosphanyl)hydrazine ligand (PhO)2PN(Me)N(Me)P(OPh)2
furnishes for 1,2-Os3(CO)10[(PhO)2PN(Me)N(Me)P(OPh)2]. The
molecular structure of the product has been determined and the
bridging of adjacent osmium atoms by the diphosphine confirmed.
This product is stable in refluxing toluene and shows no evidence
for isomerization to the chelated cluster. The electronic structures
of the bridged and chelated isomers have been evaluated by DFT
calculations. The ground-state energies computed for the isomeric
Os3(CO)10[(PhO)2PN(Me)N(Me)P(OPh)2] clusters establish the
bridged isomer as the thermodynamically more species and cor-
roborate our inability to observe spectroscopically the chelated
isomer. Isomer thermodynamics and the barrier height to diphos-
phine rearrangement in the related cluster Os3(CO)10(dppe) have
been computationally examined, and the results contrasted with
etheno-based derivatives Os3(CO)10[(Z)-Ph2PCH@CHPPh2]. The sat-
urated backbone in the bis(phosphanyl)hydrazine and dppe li-
gands destabilizes the chelated isomer relative to the bridged
isomer.
[24] A.D. Becke, J. Chem. Phys. 98 (1993) 5648.
[25] C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37 (1988) 785.
Acknowledgments
[26] (a) In our calculations on the different osmium clusters reported here,
numerous low-frequency vibrations (10–100 cmꢁ1) were encountered in the
two minima and the connecting merry-go-round transition state. Within the
harmonic oscillator approximation, these frequencies will serve as a source of
error for the temperature-corrected free energy values. Accordingly, we have
avoided using free energies in our discussions in the absence of corroborating
experimental data.;
Financial support from the Robert A. Welch Foundation (Grant
B-1093-MGR) and is much appreciated. NSF support of the NMR
and computational facilities through grants CHE-0840518 and
CHE-0741936 is acknowledged. We also wish to thank Prof. Mi-
chael B. Hall (TAMU) for providing us a copy of his JIMP2 program,
which was used to prepare the geometry-optimized structures re-
ported here.
(b) C.J. Cramer, Essentials of Computational Chemistry, second ed., Wiley,
2004;
(c) L.A. Watson, O. Eisenstein, J. Chem. Ed. 79 (2002) 1269.
[27] JIMP2, version 0.091, a free program for the visualization and manipulation of
molecules: (a) M.B. Hall, R.F. Fenske, Inorg. Chem. 11 (1972) 768;
(b) J. Manson, C.E. Webster, M.B. Hall, Texas A&M University, College Station,
Appendix A. Supplementary material
[28] V.S. Reddy, K.V. Katti, C.L. Barnes, Inorg. Chem. 34 (1995) 5483.
[29] J. Shen, E.D. Stevens, S.P. Nolan, Organometallics 17 (1998) 3000.
[30] A.M.Z. Slawin, M. Wainwright, J.D. Woollins, Dalton Trans. (2002) 513.
[31] J. Bravo, J. Castro, S. García-Fontán, M.C. Rodríguez-Martínez, G. Albertin, S.
Antoniutti, A. Manera, J. Organomet. Chem. 692 (2007) 5481.
[32] S.G. Bott, J.C. Wang, M.G. Richmond, J. Chem. Crystallogr. 29 (1999) 587.
[33] Depending on the stereochemical disposition of the ancillary diphosphine, two
different ligand-chelated isomers exist for Os3(CO)10(PAP). The chelated
isomer whose phosphines are situated at an equatorial (Peq) and an axial
(Pax) site has been shown to be less stable than the corresponding isomer
whose phosphines are each coordinated at an equatorial site. The enthalpic
CCDC 729793 contains the supplementary crystallographic data
for 1,2-Os3(CO)10[(PhO)2PN(Me)N(Me)P(OPh)2]; these data may be
obtained free of charge from The Cambridge Crystallographic Data
nates and energies of the optimized stationary points and transi-
tion-state structures are available upon request from the author
(MGR). Supplementary data associated with this article can be