Z.-Y. Xue, L.-X. Liu, Y. Jiang, W.-C. Yuan, X.-M. Zhang
SHORT COMMUNICATION
Acknowledgments
We are grateful for financial support from the National Sciences
Foundation of China (20972155) and National Basic Research Pro-
gram of China (973 Program) (2010CB833300).
[1] For a review of γ-peptides, see: D. Seebach, A. K. Beck, D. J.
Bierbaum, Chem. Biodiversity 2004, 1, 1111–1239.
[2] a) M. Hagihara, N. J. Anthony, T. J. Stout, J. Clardy, S. L.
Schreiber, J. Am. Chem. Soc. 1992, 114, 6568–6570; b) S. Han-
essian, X. H. Luo, R. Schaum, S. Michnick, J. Am. Chem. Soc.
1998, 120, 8569–8570; c) M. G. Woll, J. R. Lai, I. A. Guzei,
S. J. C. Taylor, M. E. B. Smith, S. H. Gellman, J. Am. Chem.
Soc. 2001, 123, 11077–11078; d) D. Seebach, M. Brenner, M.
Rueping, B. Schweizer, B. Jaun, Chem. Commun. 2001, 207–
208; e) D. Seebach, M. Brenner, M. Rueping, B. Jaun, Chem.
Eur. J. 2002, 8, 573–584; f) D. Seebach, L. Schaeffer, M.
Brenner, D. Hoyer, Angew. Chem. 2003, 115, 800–802; Angew.
Chem. Int. Ed. 2003, 42, 776–778; g) J. Farrera-Sinfreu, L. Zac-
caro, D. Vidal, X. Salvatella, E. Giralt, M. Pons, F. Albericio,
M. Royo, J. Am. Chem. Soc. 2004, 126, 6048–6057; h) P. I. Arv-
idsson, N. S. Ryder, H. M. Weiss, D. F. Hook, J. Escalante, D.
Seebach, Chem. Biodiversity 2005, 2, 401–420; i) M. Khurram,
N. Qureshi, M. D. Smith, Chem. Commun. 2006, 5006–5008.
[3] a) R. P. Robinson, E. R. Laird, J. F. Blake, J. Bordner, K. M.
Donahue, L. L. Lopresti-Morrow, P. G. Mitchell, M. R. Reese,
L. M. Reeves, E. J. Stam, S. A. Yocum, J. Med. Chem. 2000,
43, 2293–2296; b) B. E. Looker, A. J. Redgrave, C. J. Lunniss,
D. P. Reynolds (Glaxo Group LTD.), WO 02/24623 A2, 2002;
c) D. Craig, C. J. T. Hyland, S. E. Ward, Chem. Commun. 2005,
3439–3441; d) H. Liu, X. H. He, D. Phillips, X. F. Zhu, K. Y.
Yang, T. Lau, B. G. Wu, Y. P. Xie, T. N. Nguyen, X. Wang
(Irmllc), WO 2008/076754, 2008; e) J. D. Hu (Eli Lilly and
Company), WO 2009/131814 A2, 2009; f) H. Ren, R. Liu, L.
Chen, T. J. Zhu, W. M. Zhu, Q. Q. Gu, Arch. Pharmacal Res.
2010, 33, 499–502; g) J. A. Kozlowski, W. S. Yu, M. K. C.
Wong, S.-H. Kim, L. Tong, B. J. Lavey, B. B. Shankar, D. Y.
Yang, R. Feltz, A. M. Kosinski, G. W. Zhou, R. K. Rizvi, C. Y.
Dai, L. Fire, V. M. Girijavallabhan, D. S. Li, J. Popovici-
Muller, J. E. Richard, K. E. Kristin, M. A. Siddiqui, L. P. Yang
(Schering Corp.), WO 2010/054279 A1, 2010.
Scheme 3. Synthesis of chiral γ-lactam 7 and its synthetic potential
in the construction of pharmaceutically active agents.
Conclusions
In conclusion, we have developed a general, highly enan-
tioselective hydrosilylation of γ-imino esters promoted by
chiral Lewis base organocatalysts. This transformation en-
ables the straightforward, mild, and highly effective synthe-
sis of various chiral γ-amino esters in high yield (96%) with
excellent enantioselectivities (99%). The problem of low
yield was successfully resolved by rational modification of
the substrate. The absolute configuration of γ-amino ester
3l was determined to be (S) by X-ray crystallographic
analysis. Finally, γ-amino esters 3p and 3m were employed
in the synthesis of two optically active γ-lactams that are
important in the construction of pharmaceutically active
agents.
[4] a) M. K. Christensen, L. K. A. Blæhr (Leo Pharma A/S), WO
03/059921 A1, 2003; b) P. Johnson, A. Leach, R. W. A. Luke,
Z. S. Matusiak, J. J. Morris (AstraZeneca AB), WO 2009/
047563 A1, 2009.
[5] a) R. L. Elliott, K. B. Ryther, D. J. Anderson, M. Piattoni-Ka-
plan, T. A. Kuntzweiler, D. Donnelly-Roberts, S. P. Arneric,
M. W. Holladay, Bioorg. Med. Chem. Lett. 1997, 7, 2703–2708;
b) J. W. Corbett, K. Dirico, W. Song, B. P. Boscoe, S. D. Doran,
D. Boyer, X. Qiu, M. Ammirati, M. A. Vanvolkenburg, R. K.
McPherson, J. C. Parker, E. D. Cox, Bioorg. Med. Chem. Lett.
2007, 17, 6707–6713; c) M. M. Goodman, Atlanta, United
States Patent, 09/073729, Patent No. 6162417, 2000; d) C. V.
Galliford, K. A. Scheidt, Angew. Chem. 2007, 119, 8902–8912;
Angew. Chem. Int. Ed. 2007, 46, 8748–8758; e) P. O. Stephen,
US 2007/0099913 A1, 2007; f) L. C. Blaszczak, S. R. Pulley,
M. A. Robertson, S. M. Sheehan, Q. Shi, M. R. Wiley (Eli Lilly
and Company), WO 2007/015805 A1, 2007; g) M. Shultz,
C. H.-T. Chen, Y. S. Cho, L. Jiang, J. M. Fan, G. Liu, D. Ma-
jumdar (Novartis AG), WO 2009/118305 A1, 2009.
[6] a) A. Dömling, B. Beck, U. Eichelberger, S. Sakamuri, S.
Menon, Q. Z. Chen, Y. C. Lu, L. A. Wessjohann, Angew.
Chem. 2006, 118, 7393–7397; Angew. Chem. Int. Ed. 2006, 45,
7235–7239; b) M. Sani, G. Fossati, F. Huguenot, M. Zanda,
Angew. Chem. 2007, 119, 3596–3599; Angew. Chem. Int. Ed.
2007, 46, 3526–3529; c) A. Ullrich, Y. Chai, D. Pistorius, Y. A.
Elnakady, J. E. Herrmann, K. J. Weissman, U. Kazmaier, R.
Müller, Angew. Chem. 2009, 121, 4486–4489; Angew. Chem. Int.
Ed. 2009, 48, 4422–4425.
Experimental Section
General Procedure for the Asymmetric Hydrosilylation of γ-Imino
Esters: A solution of trichlorosilane (41 μL, 0.4 mmol, 2.0 equiv.)
in dry Cl2CHCHCl2 (0.2 mL) was added to a stirred solution of
the corresponding γ-imino ester (0.2 mmol) and the catalyst
(0.02 mmol) in dry Cl2CHCHCl2 (2 mL) at –10 °C. The mixture
was stirred at –10 °C for 12 h. Then, the reaction was quenched
with a saturated aqueous solution of NaHCO3 and extracted with
EtOAc. The combined organic layer was washed with brine and
dried with anhydrous Na2SO4; the solvents were evaporated. Purifi-
cation by column chromatography (silica gel, petroleum ether/
EtOAc) afforded the pure product. The ee values were determined
by using established HPLC techniques with chiral stationary
phases.
Supporting Information (see footnote on the first page of this arti-
cle): Experimental procedures and spectral and analytical data for
γ-imino esters and γ-amino esters, HPLC chromatograms for γ-
amino esters, X-ray crystal structure of 3l·HCl.
254
www.eurjoc.org
© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2012, 251–255