Macromolecules
Article
(15) Wang, F.; Wilson, M. S.; Rauh, R. D.; Schottland, P.;
Thompson, B. C.; Reynolds, J. R. Macromolecules 2000, 33, 2083−
2091.
(16) Miyakoshi, R.; Shimono, K.; Yokoyama, A.; Yokozawa, T. J. Am.
Chem. Soc. 2006, 128, 16012−16013.
PTPP-b-P3HT. These results unambiguously show, for the first
time, that conjugated polymers with alternating repeating units
can be synthesized in a controlled, chain-growth manner. Many
low-bandgap and D−A conjugated polymers exhibit complex,
alternating structures but are currently synthesized by means
that do not permit the aforementioned degree of control over
the polymerization. It is expected that the method presented
herein will be amenable to attaining control over the synthesis
of such D−A and other conjugated polymers and enable access
to more complex macromolecular structures thereof.
(17) Our decision to use a monomer that metalates at the thiophene
as opposed to the phenyl moiety was based on the work of Yokozawa
and co-workers, who demonstrated that the order of polymerization
was critical to the outcome of forming block copolymers containing
P3HT and poly(p-phenylene) (PPP) segments: successive polymer-
ization of the phenylene monomer followed by the thiophene
monomer yielded a well-defined block copolymer with narrow
molecular weight distribution, while reversing the order of monomer
addition resulted in polymers with broad molecular weight
distributions.22 In other words, we anticipated that if metalation
occurred at the thiophene unit, the propagating end of the resulting
polymer (i.e., polymer−NiLBr) would feature a terminus where Ni is
connected to a phenyl group, reminiscent of a Ni-terminated PPP, and
ultimately result in a controlled polymerization process. In contrast,
metalation at the phenyl unit would lead to polymers with termini that
are reminiscent of Ni-terminated P3HT and afford ill-defined
polymers.
ASSOCIATED CONTENT
* Supporting Information
■
S
Detailed experimental procedures and additional character-
ization details. This material is available free of charge via the
AUTHOR INFORMATION
Corresponding Author
■
(18) Lanni, E. L.; McNeil, A. J. Macromolecules 2010, 43, 8039−8044.
(19) Lanni, E. L.; McNeil, A. J. J. Am. Chem. Soc. 2009, 131, 16573−
16579.
Notes
The authors declare no competing financial interest.
(20) Lohwasser, R. H.; Thelakkat, M. Macromolecules 2011, 44,
3388−3397.
ACKNOWLEDGMENTS
■
(21) The signals observed at m/z 7746 and 8575 were assigned to an
H/I terminated polymer as adducts of Li and dihydroxybenzoic acid
(DHB, the matrix material) according to the following formula 414.3n
(mass of n repeat units) + 1 (H) + 127 (I) + 7 (Li) + 154 (DHB). An
H/I terminated polymer can arise from the generation of a small
concentration of (2,5-bis(2-ethylhexyloxy)-4-(5-iodothiophen-2-yl)
phenyl)magnesium chloride formed during the Grignard metathesis
reaction, where the metalation of 1 occurs at the phenyl instead of at
the thiophene moiety. This monomer can then initiate a polymer-
ization reaction, thereby establishing an iodo group on one end of a
polymer chain and, after catalyst transfer and quenching with HCl, a
hydrogen group on the other.
This material is based upon work supported by the National
Science Foundation through the Centers for Chemical
Innovation (CCI) under Grant CHE-0943957 as well as the
Robert A. Welch Foundation (F-1621). We thank Dr. Karin
Keller for conducting the MALDI mass spectrometry and Dr.
Johanna Brazard for assistance with the fluorescence spectros-
copy experiments as well as for helpful discussions.
REFERENCES
■
(1) Sheina, E. E.; Liu, J.; Iovu, M. C.; Laird, D. W.; McCullough, R.
D. Macromolecules 2004, 37, 3526−3528.
(22) Miyakoshi, R.; Yokoyama, A.; Yokozawa, T. Chem. Lett. 2008,
37, 1022−1023.
(2) Miyakoshi, R.; Yokoyama, A.; Yokozawa, T. J. Am. Chem. Soc.
2005, 127, 17542−17547.
(23) Yokoyama, A.; Kato, A.; Miyakoshi, R.; Yokozawa, T.
Macromolecules 2008, 41, 7271−7273.
(3) Liang, Y.; Feng, D.; Wu, Y.; Tsai, S.-T.; Li, G.; Ray, C.; Yu, L. J.
Am. Chem. Soc. 2009, 131, 7792−7799.
(24) Tkachov, R.; Senkovskyy, V.; Komber, H.; Sommer, J.-U.; Kiriy,
A. J. Am. Chem. Soc. 2010, 132, 7803−7810.
(4) Peet, J.; Kim, J. Y.; Coates, N. E.; Ma, W. L.; Moses, D.; Heeger,
A. J.; Bazan, G. C. Nature Mater. 2007, 6, 497−500.
(5) Cheng, Y.-J.; Yang, S.-H.; Hsu, C.-S. Chem. Rev. 2009, 109,
5868−5923.
(25) Bao, Z.; Chan, W.; Yu, L. Chem. Mater. 1993, 5, 2−3.
(26) Kim, Y. g.; Galand, E. M.; Thompson, B. C.; walker, J.; Fossey,
S. A.; McCarley, T. D.; Abboud, K. A.; Reynolds, J. R. J. Macromol. Sci.,
Part A: Pure Appl. Chem. 2007, 44, 665−674.
(6) Adachi, T.; Brazard, J.; Ono, R. J.; Hanson, B.; Traub, M. C.; Wu,
Z.-Q.; Li, Z.; Bolinger, J. C.; Ganesan, V.; Bielawski, C. W.; Vanden
Bout, D. A.; Barbara, P. F. J. Phys. Chem. Lett. 2011, 2, 1400−1404.
(7) Segalman, R. A.; McCulloch, B.; Kirmayer, S.; Urban, J. J.
Macromolecules 2009, 42, 9205−9216.
(8) Elmalem, E.; Kiriy, A.; Huck, W. T. S. Macromolecules 2011, 44,
9057−9061.
(27) Lere-Porte, J.-P.; Moreau, J. J. E.; Serein-Spirau, F.; Torreilles,
C.; Righi, A.; Sauvajol, J.-L.; Brunet, M. J. Mater. Chem. 2000, 10, 927−
932.
(28) Tanese, M. C.; Farinola, G. M.; Pignataro, B.; Valli, L.; Giotta,
L.; Conoci, S.; Lang, P.; Colangiuli, D.; Babudri, F.; Naso, F.;
Sabbatini, L.; Zambonin, P. G.; Torsi, L. Chem. Mater. 2005, 18, 778−
784.
(29) Xu, B.; Holdcroft, S. Macromolecules 1993, 26, 4457−4460.
(30) Kiriy, N.; Jahne, E.; Adler, H.-J.; Schneider, M.; Kiriy, A.;
Gorodyska, G.; Minko, S.; Jehnichen, D.; Simon, P.; Fokin, A. A.;
Stamm, M. Nano Lett. 2003, 3, 707−712.
(31) Liu, C.-Y.; Holman, Z. C.; Kortshagen, U. R. Nano Lett. 2008, 9,
449−452.
(9) Proper spacial arrangement of neighboring aromatic rings has
been shown to promote the controlled chain-growth Kumada CTP of
a nonconjugated monomer, 3-(5-bromo-2-thienyl)-3-(5-iodo-2-thien-
yl)nonane. See: Wu, S.; Sun, Y.; Huang, L.; Wang, J.; Zhou, Y.; Geng,
Y.; Wang, F. Macromolecules 2010, 43, 4438−4440.
(10) Beryozkina, T.; Senkovskyy, V.; Kaul, E.; Kiriy, A. Macro-
molecules 2008, 41, 7817−7823.
̈
(11) Huang, L.; Wu, S.; Qu, Y.; Geng, Y.; Wang, F. Macromolecules
2008, 41, 8944−8947.
(12) Javier, A. E.; Varshney, S. R.; McCullough, R. D. Macromolecules
2010, 43, 3233−3237.
(13) Wu, S.; Bu, L.; Huang, L.; Yu, X.; Han, Y.; Geng, Y.; Wang, F.
Polymer 2009, 50, 6245−6251.
(14) Stefan, M. C.; Javier, A. E.; Osaka, I.; McCullough, R. D.
Macromolecules 2008, 42, 30−32.
2326
dx.doi.org/10.1021/ma300013e | Macromolecules 2012, 45, 2321−2326