B. Reichart, C. O. Kappe / Tetrahedron Letters 53 (2012) 952–955
955
Table 4
Batch and continuous flow synthesis of 2,5-substitued-1,3,4-oxadiazoles 2 using acid chloride electrophilesa
R2COCl (1.25 equiv), Et3N (2.5 equiv)
HN
N
N
N
N
pyr/MeCN (1:9)
R1
R1
R2
N
O
MW or Flow, 200 °C, 8-10 min
2n, 2r-u
1a 1d 1k 1m
,
,
,
b
c
Tetrazole 1
a: R1 = C6H5
R2COCl (1.25 equiv)
R2 = C6H5
Method
Time (min)
Yield (%)
MW
Flow
MW
Flow
MW
Flow
MW
Flow
MW
Flow
8
8
8
8
8
8
10
10
10
10
91
92
88
87
75
76
80
81
75
80
1k: R1 = 4-(Cl)-benzyl
1m: R1 = Me(Ph)2C
1a: R1 = C6H5
R2 = C6H5
R2 = C6H5
R2 = Et
1d: R1 = 4-(CF3)-C6H4
R2 = Et
a
Conditions MW: see Table 2, entry 12; continuous flow: one feed concept using 1.2 mmol of 1, 1.25 mmol of R2COCl and 2.5 equiv of Et3N dissolved in 15 mL of 1:9
pyridine/acetonitrile (v/v) pumped through a 20 mL stainless steel coil (FlowSyn, Uniqsis Ltd).
b
Reaction times refer to hold times at 200 °C in the microwave experiments, and to residence times in the continuous flow experiments in the 20 mL stainless steel coil
(flow rate 2.0–2.5 mL/min).
c
Isolated yields. For work-up protocols, see the Electronic Supplementary data.
9. (a) Ostrovskii, V. A.; Koldobskii, G. I.; Trifonov, R. E. In Comprehensive
In conclusion, we have demonstrated that 2,5-disubstituted-
1,3,4-oxadiazoles of type 2 can be synthesized with very high
Heterocyclic Chemistry III; Katritzky, A. R., Ramsden, C. A., Scriven, E. F. V.,
Taylor, R. K., Eds.; Elsevier: Amsterdam, 2008; vol. 6, pp 257–423; (b)
Hetzheim, A., 4th ed. In Methoden der Organischen Chemie (Houben-Weyl);
Schaumann, E., Ed.; Thieme: Stuttgart, 1994; Vol. 8c, p 526; (c) Koldobskii, G. I.;
Ivanova, S. E. Russ. J. Gen. Chem. 1994, 64, 1512–1517; (d) Moderhack, D. J. Prakt.
Chem. 1988, 340, 687–709.
efficiency (5–10 min) using
a high-temperature/high-pressure
(high-T/p) microreactor approach. Employing microwave batch
technology as an optimization tool, optimum reaction conditions
were rapidly identified and subsequently translated to a continuous
flow protocol. This method now allows the safe conversion of ther-
mally compromised 1H-tetrazoles into thecorresponding 1,3,4-oxa-
diazoles (Huisgen reaction).
10. (a) Huisgen, R.; Sauer, J.; Sturm, H. J. Angew. Chem. 1958, 70, 272–273; (b)
Sauer, J.; Huisgen, R.; Sturm, H. J. Tetrahedron 1960, 11, 241–251; (c) Huisgen,
R.; Sauer, J.; Sturm, H. J.; Markgaf, J. H. Chem. Ber. 1960, 93, 2106–2124; (d)
Huisgen, R.; Sturm, H. J.; Seidel, M. Chem. Ber. 1961, 94, 1555–1562; (e)
Huisgen, R.; Sauer, J.; Seidel, M. Chem. Ber. 1961, 94, 2503–2509.
11. For more recent applictions of the Huisgen oxadiazole synthesis, see: (a) Jursic,
B. S.; Zdravkovski, Z. Synth. Commun. 1994, 24, 1575–1582; (b) Fürmeier, S.;
Metzger, J. O. Eur. J. Org. Chem. 2003, 885–893; (c) Obushak, N. D.; Pokhodylo,
N. I.; Matiichuk, V. S. Russ. J. Org. Chem. 2008, 44, 1522–1527; (d) Vereshchagin,
L. I.; Petrov, A. V.; Proidakov, A. G.; Pokatilov, F. A.; Smirnov, A. I.; Kizhnyaev, V.
N. Russ. J. Org. Chem. 2004, 42, 912–917; (e) Tóth, M.; Kun, S.; Bokor, E.; Benltifa,
M.; Tallec, G.; Vidal, S.; Docsa, T.; Gergely, P.; Somsák, L.; Praly, J. P. Biorg. Med.
Chem. 2009, 17, 4773–4785.
Acknowledgments
This work was supported by a Grant from the Christian Doppler
Research Foundation (CDG). We thank Bernhard Gutmann for his
contributions to this work.
12. (a) Lesnikovich, A. I.; Levchik, S. V.; Balabanovich, A. I.; Ivaskevich, O. A.;
Gaponik, P. N. Thermochim. Acta 1992, 200, 427–441; (b) Klapötke, T. M. In High
Energy Density Materials; Klapötke, T. M., Ed.; Springer: Heidelberg, 2007; Vol.
125, pp 36–52.
Supplementary data
Supplementary data associated with this article can be found, in
13. (a) Herr, R. J. Bioorg. Med. Chem. 2002, 10, 3379–3383; (b) Wittenberger, S. J.
Org. Prep. Proced. Intl. 1994, 26, 499–531.
14. (a) Gutmann, B.; Roduit, J. P.; Roberge, D.; Kappe, C. O. Angew. Chem., Int. Ed.
2010, 49, 7101–7105; See also: (b) Cantillo, D.; Gutmann, B.; Kappe, C. O. J. Am.
Chem. Soc. 2011, 133, 4465–4475; (c) Gutmann, B.; Glasnov, T. N.; Razzaq, T.;
Goessler, W.; Roberge, D. M.; Kappe, C. O. Beilstein J. Org. Chem. 2011, 7, 503–
517.
15. Palde, B. P.; Jamison, T. F. Angew. Chem., Int. Ed. 2011, 50, 3525–3528.
16. For recent publications involving the use of microwave heating in the Huisgen
reaction, see: (a) Macheno, O. G.; Bolm, C. Org. Lett. 2007, 9, 2951–2954; (b)
Lukyanov, S. M.; Bliznets, I. V.; Shorshnev, S. V.; Aleksandrov, G. G.; Stepanow,
A. E.; Vasilev, A. A. Tetrahedron 2006, 62, 1849–1863; (c) Efimova, Y.;
Artamonova, T. V.; Koldobskii, G. I. Russ J. Org. Chem. 2008, 44, 1345–1347.
17. For a review, see: Glasnov, T. N.; Kappe, C. O. Chem. Eur. J. 2011, 17, 11956–
11968.
References and notes
1. (a) Bala, S.; Kamboj, S.; Kumar, A. J. Pharm. Res. 2010, 3, 2993–2997; (b) Somani,
R. R.; Shirodkar, P. Y. Der Pharma Chemica 2009, 1, 130–140; (c) Hill, J. In
Comprehensive Heterocyclic Chemistry II; Katritzky, A. R., Rees, L. W., Scriven, E.
F. V., Eds.; Pergamon Press: Oxford, 1996; Vol. 4, pp 285–286; (d) Suwinski, J.;
Szczepankiewicz, W. In Comprehensive Heterocyclic Chemistry III; Katritzky, A.
R., Ramsden, C. A., Scriven, E. F. V., Taylor, R. J. K., Eds.; Elsevier: Amsterdam,
2008; Vol. 5, pp 447–459.
2. Omar, F. A.; Mahfouz, N. M.; Rahman, M. A. Eur. J. Med. Chem. 1996, 31, 819–
825.
18. General procedure for the continuous flow synthesis of 1,3,4-oxadiazoles 2
from 1H-tetrazoles and anhydrides (Table 3): A sample of 1.2 mmol of the
respective tetrazole 1a–l and 2.4 mmol (2 equiv) of the corresponding
anhydride was dissolved in 15 mL of DME (DMF for 1b, 1c, 1h, 1i). The
resulting reaction mixture was pumped through the coil reactor (ꢀ20 mL
heated volume; 5–10 min residence time; flow rate 2.0–4.0 mL/min) heated at
220 °C. The reaction mixture was cooled in the plate heat exchanger to ꢀ25 °C
and left the reactor through a 34 bar back pressure regulator. The complete
reaction mixture was collected (plus 4 mL pre collection and 8 mL post
collection) and the desired products isolated by an extractive work-up (for
details see the Electronic Supplementary data).
3. Serrao, E.; Odde, S.; Ramkumar, K.; Neamati, N. Retrovirology 2009, 6–25.
4. Vardan, S.; Smulyan, H.; Mookherjee, S.; Eich, R. Clin. Pharmacol. Ther. 1983, 34,
290–296.
5. Schlecker, R.; Thieme, P. C. Tetrahedron 1988, 44, 3289–3294.
6. (a) Wang, G.; He, Y. Mater. Lett. 2009, 63, 470–472; (b) Hu, N.; Esteghamatian,
M.; Xie, S.; Popovic, Z.; Hor, A.; Ong, B.; Wang, S. Adv. Mat. 1999, 11, 1460–1463.
7. (a) Schulz, B.; Bruma, M.; Brehmer, L. Adv. Mater. 1997, 9, 601–613; (b)
Hensema, E. R.; Mulder, M. H. V.; Smolders, C. A. J. App. Polym. Sci. 1993, 49,
2081–2090; (c) Leibnitz, P.; Eisold, C.; Paul, D. Angew. Makromol. Chem. 1993,
210, 197–205; (d) Schulz, B.; Brehmer, L. In Polymeric Materials Encyclopedia;
Salamone, J., Ed.; CRC Press: New York, 1996; Vol. 7, p 5595.
19. This method has been used previously in our laboratories for high-temperature
continuous flow transformations involving HCl in stainless steel coils, see:
Obermayer, D.; Glasnov, N. T.; Kappe, C. O. J. Org. Chem. 2011, 76, 6657–6669.
See also Ref. 14c.
8. For reviews on the preparation of 1,3,4-oxadiazoles, see: (a) Jakopin, Z.; Dolenc,
M. S. Curr. Org. Chem. 2008, 12, 850–898; (b) Rakitin, O. A. In Comprehensive
Heterocyclic Chemistry III; Katritzky, A. R., Ramsden, C. A., Scriven, E. F. V.,
Taylor, R. J. K., Eds.; Elsevier: Amsterdam, 2008; Vol. 6, pp 1–36; (c) Hetzheim,
A.; Möckel, K. In Advances in Heterocyclic Chemistry; Katritzky, A. R., Boulton, A.
J., Eds.; Elsevier: Amsterdam, 1967; Vol. 7, pp 183–224.