I. Yavari et al. / Tetrahedron Letters 53 (2012) 942–943
943
NH
O
O
NC
R
R
H
N
S
H
N
H
NH2
O
S
CuI (10 mol%),
Et3N, N2
NH2
1
N
R'
O
3
C
R'
N
N
THF, rt, 12 h
O
O
R
S
NH2
R'
N3
4
2
R
Yield (%)
R'
Product
4a
4b
4c
4d
4e
4f
Ph
p-tolyl
Ph
83
87
79
65
63
60
60
57
52
Ph
Ph
Me
n-Pr
n-Pr
n-Pr
n-Bu
n-Bu
n-Bu
p-tolyl
Ph
Me
p-tolyl
Ph
4g
4h
4i
Me
Scheme 1. Synthesis of compounds 4.
8. Curran, K. J.; Verheijen, J. C.; Kaplan, J.; Richard, D. J.; Toral-Barza, L.; Hollander,
I.; Lucas, J.; Ayral-Kaloustian, S.; Yu, K.; Zask, A. Bioorg. Med. Chem. Lett. 2010,
20, 1440.
9. Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. Angew. Chem., Int. Ed.
2002, 41, 2596.
R
Cu
Cu
_
CuI
N2
2
C
C
NTs
R
Cu
1
N
N
Ts
R
N
10. Wang, J.; Wang, J. J.; Zhu, Y. X.; Lu, P.; Wang, Y. G. Chem. Commun. 2011, 3275.
11. Cui, S. L.; Lin, X. F.; Wang, Y. G. Org. Lett. 2006, 8, 4517.
6
5
7
12. Cui, S. L.; Wang, J.; Wang, Y. G. Tetrahedron 2008, 64, 487.
13. Yao, W. J.; Pan, L. J.; Zhang, Y. P.; Wang, G.; Wang, X. Q.; Ma, C. Angew. Chem.,
Int. Ed. 2010, 49, 9210.
R
R
14. General procedure for the preparation of pyrimidines 4a–i: To a mixture of azide
2, (1.2 mmol), alkyne 1 (1 mmol), CuI (0.1 mmol), and Et3N (1 mmol) in THF
(2 mL) was slowly added, under N2 atmosphere, cyanoguanidine (3) (1 mmol).
The mixture was stirred at room temperature. After completion of the reaction
[about 12 h, TLC (EtOAc/hexane, 1:5) monitoring], the mixture was diluted
with CH2Cl2 (2 mL) and aqueous NH4Cl solution (3 mL), stirred for 30 min, and
the layers separated. The aqueous layer was extracted with CH2Cl2 (3 mL Â 3)
and the combined organic fractions dried (Na2SO4) and concentrated under
reduced pressure. The residue was purified by flash column chromatography
[silica gel (230–400 mesh; Merck), hexane/EtOAc, 5:1] to give the product.
N1-(2,6-Diamino-5-phenyl-4-pyrimidinyl)-4-methyl-1-benzenesulfonamide (4a).
NTs
HN
NTs
NC
intramolecular
cyclization
tautomerization
3
4
N
NH2
N
NH
NH2
NH2
8
9
Scheme 2. A plausible mechanism for the formation of compounds 4.
Cream powder; mp: 280–283 °C; yield: 0.29 g (83%). IR (KBr) (m
max, cmÀ1):
3551, 3450, 3323, 3300, 3250, 1325, 1140. 1H NMR (500 MHz, CDCl3): dH = 2.51
(3H, s, Me), 4.28 (2H, s, NH2), 4.50 (2H, s, NH2), 7.13 (2H, d, 3J = 7.9 Hz, Ar),
7.16–7.68 (5H, m, Ph), 7.98 (2H, d, 3J = 7.9 Hz, Ar), 8.33 (1H, s, NH). 13C NMR
(125.7 MHz, CDCl3): dC = 29.3 (Me), 124.0 (CH), 124.8 (2CH), 130.6 (2CH), 135.2
(2CH), 136.0 (2CH), 136.1 (C), 147.5 (C), 151.4 (C), 153.7 (C), 154.8 (C), 156.7
(C), 158.8 (C). EI-MS: m/z (%) = 355 (M+, 15), 339 (10), 323 (10), 278 (16), 170
The present method may be considered a practical route for the syn-
thesis of functionalized sulfonamidopyrimidines. The short reaction
times and readily available starting materials and catalyst are the
main advantages of this methodology.
(42), 155 (100), 108 (64), 91 (70), 77 (54). Anal. Calcd for
C17H17N5O2S
Supplementary data
(355.00): C, 57.45; H, 4.82; N, 19.70. Found: C, 57.79; H, 4.86; N, 19.81.
N1-(2,6-Diamino-5-phenyl-4-pyrimidinyl)-1-benzenesulfonamide (4b). Pale-
yellow powder; mp: 260–266 °C; yield: 0.29 g (87%). IR (KBr) (m
max, cmÀ1):
Supplementary data associated with this article can be found, in
3545, 3453, 3333, 3300, 3255, 1323. 1H NMR (500 MHz, CDCl3): dH = 4.20 (2H,
s, NH2), 4.42 (2H, s, NH2), 7.01 (2H, t, 3J = 7.1 Hz, Ar), 7.23 (1H, t, 3J = 7.1 Hz, Ar),
7.48 (2H, d, 3J = 7.1 Hz, Ar), 7.63 (2H, t, 3J = 7.2 Hz, Ar), 7.79 (1H, t, 3J = 7.2 Hz,
Ar), 7.87 (2H, d, 3J = 7.2 Hz, Ar), 9.00 (1H, s, NH). 13C NMR (125.7 MHz, CDCl3):
dC = 124.2 (2CH), 125.3 (2CH), 126.0 (2CH), 132.8 (CH), 134.8 (CH), 135.2 (2CH),
138.1 (C), 149.6 (C), 152.9 (C), 154.8 (C), 158.4 (C), 160.1 (C). EI-MS: m/z
(%) = 341 (M+, 10), 325 (11), 309 (10), 264 (18), 156 (23), 141 (100), 108 (40),
77 (50). Anal. Calcd for C16H15N5O2S (341.35): C, 56.29; H, 4.43; N, 19.37.
Found: C, 56.44; H, 4.46; N, 19.51.
References and notes
1. Dewick, P. M. Medicinal Natural Products, 2nd ed.; John Wiley & Sons, Ltd:
Chichester, UK, 2002.
2. Sasada, T.; Kobayashi, F.; Sakai, N.; Konakahara, T. Org. Lett. 2009, 11, 2161.
3. Ahmad, O. K.; Hill, M. D.; Movassaghi, M. J. Org. Chem. 2009, 74, 8460.
4. Barthakur, M. G.; Borthakur, M.; Devi, P.; Saikia, C. J.; Saikia, A.; Bora, U.; Chetia,
A.; Boruah, R. C. Synlett 2007, 223.
5. Movassaghi, M.; Hill, M. D. J. Am. Chem. Soc. 2006, 128, 14254.
6. Bayrakdarian, M.; Butterworth, J.; Hu, Y.-J.; Santhakumar, V.; Tomaszewski, M.
J. Bioorg. Med. Chem. Lett. 2011, 21, 2102.
15. Sharpless and co-workers have established anhydrous conditions with CuI in
CHCl3/2, 6-lutidine at 0 °C to prevent intermediates of type
6 from
decomposing to enable selective formation of the desired 1-sulfonyltriazoles,
see: Yoo, E. J.; Ahlquist, M.; Kim, S. H.; Bae, I.; Fokin, V. V.; Sharpless, K. B.;
Chang, S. Angew. Chem., Int. Ed. 2007, 46, 1730.
7. Font, M.; González, Á.; Palop, J. A.; Sanmartín, C. Eur. J. Med. Chem. 2011, 46,
3887.