10.1002/anie.201915425
Angewandte Chemie International Edition
COMMUNICATION
11. e) J. Terao, N. Kambe, Acc. Chem. Res. 2008, 41, 1545. f) E. I.
Negishi, Bull. Chem. Soc. Jpn. 2007, 80, 233. g) T. Hiyama, E. Shirakawa,
Top. Curr. Chem. 2002, 219, 61. h) K.Sonogashira, J. Organomet. Chem.
2002, 653, 46. i) J. K. Stille, Angew. Chem. Int. Ed. 1986, 25, 508. j) K.
Fugami, M. Kosugi, Top. Curr. Chem. 2002, 219, 87.
directed metalation and halogen-metal exchange further bolsters
the versatility of this method. For example, 2-pyridyl 3-
iodopyrazine 88 and 2-pyridyl pyrazine 89 were selectively and
divergently obtained from 87 through TMPMgCl·LiCl (TMP =
2,2,6,6-tetramethylpiperidinyl) deprotonation30 or nBuMgCl
exchange29 followed by the present cross-coupling protocol
(Scheme 2B). It is worth noting that the iodo group was found
intact under the deprotonation conditions to access 88.
Compound 91, an advanced intermediate to access anaplastic
lymphoma kinase (ALK) 4/5 inhibitor developed by Novartis, was
obtained from the corresponding pyridyl Grignard 11 and
azaindole partner 90 in a single step after acidic quench -- a Stille
coupling31 was previously required to access the same
compound.32 As noted in Figure 1B, en route to BMS-599793 (6)
under process setting, a Negishi coupling utilizing a high load of
palladium catalyst (10.6 mol%) was necessary to access
intermediate 7.8 With the sulfur-mediated cross-coupling, this
critical compound was prepared from pyrazine Grignard 92 and
6-azaindole Grignard 93 in 42% yield (Scheme 2D) in the absence
of transition metal catalysts or ligands. The yield stayed consistent
when the sequence of Grignard addition was reversed (see the
Supporting Information).
[4]
[5]
a) L.-C. Campeau, K. Fagnou, Chem. Soc. Rev. 2007, 36, 1058. b) E.
Tyrrell, P. Brookes, Synthesis 2003, 469. c) M. G. Banwell, T. E.
Goodwin, S. Ng, J. A. Smith, D. J. Wong, Eur. J. Org. Chem. 2006, 3043.
a) P. A. Cox, M. Reid, A. G. Leach, A. D. Campbell, E. J. King, G. C.
Lloyd-Jones, J. Am. Chem. Soc. 2017, 139, 13156. b) P. A. Cox, A. G.
Leach, A. D. Campbell, G. C. Lloyd-Jones, J. Am. Chem. Soc. 2016, 138,
9145.
[6]
For reviews, see: a) S. Darse, J.-P. Genet, Chem. Rev. 2008, 108, 288.
b) G. A. Molander, N. Ellis, Acc. Chem. Res. 2007, 40, 275. For an
example using a-azineboronic ester, see: c) J. Z. Deng, D. V. Paone, A.
T. Ginnetti, H. Kurihara, S. D. Dreher, S. A. Weissman, S. R. Stauffer, C.
S. Burgey, Org. Lett. 2009, 11, 345. Selected masked boronic acid
coupling methods, see: d) D. M. Knapp, E. P. Gillis, M. D. Burke, J. Am.
Chem. Soc. 2009, 131, 6961. e) K. L. Billingsley, S. L. Buchwald, Angew.
Chem. Int. Ed. 2008, 47, 4695. Other stable non-boron electrophiles,
see: f) T. Markovic, P. R. D. Murray, B. N. Rocke, A. Shavnya, D. C.
Blakemore, M. C. Willis, J. Am. Chem. Soc. 2018, 140, 15916. g) L.-C.
Campeau, S. Rousseaux, K. Fagnou, J. Am. Chem. Soc. 2005, 127,
18020.
To probe the mechanism of this transformation, a series of
the sulfoxides (94–96) were prepared and treated with Grignards
(Scheme 2E). The hetero-coupling product 12 was found to be
the dominant species in all cases, possibly owing to favorable
orbital overlap within the sulfurane intermediate (97).16d-e,16i
However, the formation of byproducts 98 and 99 may suggest a
partial SNAr mechanism33 leading to C(sp2)–C(sp3) coupling
product.
[7]
[8]
T. Wang, J. F. Kadow, N. A. Meanwell, K.-S. Yeung, Z. Zhang, Z, Yin, Z.
Qui, D. H. Deon, C. A. James, E. H. Ruediger, C. Bachband,
US7915283B2, 2011.
a) S. M. Schader, S. P. Colby-Germinario, P. K. Quashie, M. Oliverira,
R.-I. Ibanescu, D. Moisi, T. Mespléde, M. A. Waiberg, Antimicrob. Agents
Chemother. 2012, 56, 4527. b) ref 7. Alternative reported synthesis to
compound 6 was shown as below:
In summary, capitalizing on the unique reactivity of
sulfuranes,
a sulfinyl (IV) chloride–mediated cross-coupling
between heteroarene Grignard reagents has been developed.
Complementary to the venerable Kumada, Negishi, or Stille
couplings, this reaction is uniquely suited for the preparation of
Lewis basic substrates which are difficult to couple under classical
conditions. A large number of functional groups are tolerated
under the reaction condition, allowing modular and rapid access
to molecular complexity.
SnBu3
N
N
N
30 mol% Pd(PPh3)4
Cl
OMe
OMe
N
+
N
150 °C, 5 h
13%
N
HN
HN
R
6
R
CN
O
R =
N
O
Acknowledgements
Financial support was provided by the Robert A. Welch
Foundation (Grant I-2010-20190330) and the Eugene McDermott
Scholar Endowed Scholarship. We thank Prof. Phil S. Baran, Drs.
Ming Yan, and Jacob T. Edwards for helpful discussions and
assistance in manuscript preparation. We thank Professors Chuo
Chen, Jef De Brabander, Joseph Ready, Uttam Tamber, Myles
Smith, and J. R. Falck for insightful discussions and the generous
use of their reagents and equipment.
[9]
S. Pikul, H. Cheng, A. Cheng, C. D. Huang, A. Ke, L. H. Kuo, A.
Thompson, S. Wilder, Org. Process Res. Dev. 2013, 17, 907.
[10] a) B. T. Boyle, M. C. Hilton, A. McNally, J. Am. Chem. Soc. 2019, 141,
15441. b) M. C. Hilton, X. Zhang, B. T. Boyle, J. V. Alegre-Requena, R.
S. Paton, A. McNally, Science 2018, 362, 799. c) J. L.; Koniarczyk, J. W.
Greenwood, J. V. Alegre-Requena, R. S. Paton, A. McNally, Angew.
Chem. Int. Ed. 2019, 58, 14882.
[11] a) W. A. Sheppard, J. Am. Chem. Soc. 1971, 93, 5597.
[12] a) R. W. LaRochelle, B. M. Trost, J. Am. Chem. Soc. 1971, 93, 6077. b)
B. Trost, R. LaRochelle, R. Atkins, J. Am. Chem. Soc. 1969, 91, 2175. .
c) B. M. Trost, H. C. Arndt, J. Am. Chem. Soc. 1973, 95, 5288.
Keywords: heterocycle • cross-coupling • sulfurane
Reference:
[13] Y. H. Khim, S. Oae, Bull. Chem. Soc. Jpn. 1969, 42, 1968.
[1]
a) Trends in Cross-Coupling: Theory and Applications; (Eds: T. Colacot)
The Royal Society of Chemistry: 2015. b) Science of Synthesis: Cross
Coupling and Heck-Type Reactions; Workbenh Edition (Eds: G.
Molander, J. P. Wolfe, M. Larhed), Thieme, 2013.
[14] J. Moc, A. Dorigo, K. Morokuma, Chem. Phys. Lett. 1993, 204, 65.
[15] SOCl2 mediated homocoupling: S. Oae, Y. Inubushi, M. Yoshihara,
Phosphorus Sulfur Silicon Relat. Elem. 1995, 103. 101.
[2]
[3]
J. F. Hartwig, Organotransition metal chemistry-from bonding to catalyst.
University Science Books: 2010. Chapter 8.
[16] For selected reviews, see: a) S. Oae, N. Furukawa, Adv. Heterocycl.
Chem. 1990, 48, 1. b) S. Oae, Y. Uchida, Acc. Chem. Res. 1991, 24,
202. c) S. Oae, Pure Appl. Chem. 1996, 68, 805. For benzyl pyridine
synthesis, see: d) S. Oae, T. Kawai, N. Furukawa, Tetrahedron Lett.
1984, 25, 69. e) S. Oae, T. Kawai, N. Furukawa, F. Iwasaki, J. Chem.
Soc., Perkin Trans 2, 1987, 405. f) T. Kawai, Y. Kodera, N. Furukawa, S.
For reviews on metal-catalyst cross-couplings, see: a) J. Hassan, M.
Sévignon, C. Gozzi, E. Schulz, M. Lemaire, Chem. Rev. 2002, 102, 1359.
b) R. F. Heck, Acc. Chem. Res. 1979, 12, 146. c) N. Miyaura, A. Suzuki,
Chem. Rev. 1995, 95, 2457. d) N. Miyaura, Top. Curr. Chem. 2002, 219,
This article is protected by copyright. All rights reserved.