Tandem Platinum Dichloride Catalysis and Thermal Reaction of Enynes
(entries 1, 2, 10 and 11) gave the expected products at Acknowledgements
slightly lower yields (41–65%) than those of N-Ts-
tethered dienynes. It has been well documented[6a]
that a [1,5]hydrogen shift pathway competes with a
vinylcyclopropane rearrangement when the 2-cis sub-
stituted groups at vinylcyclopropane contain at least
one hydrogen atom at the a-position. However, our
study shows that the 1,5-hydrogen shift is unique to
dienyne substrates having a methyl group at the ter-
minal carbon of the alkene moiety and is much pre-
ferred when dienynes have an aryl group at the inner
position of an alkene.
This work was supported by the National Research Founda-
tion of Korea (NRF) (2010-0029663) and the Basic Science
Research Program through the NRF funded by the Ministry
of Education, Science and Technology (R11-2005-065). SS is
grateful for the BK21 fellowship.
References
[1] For recent reviews, see: a) C. Aubert, O. Buisine, M.
Malacria, Chem. Rev. 2002, 102, 813; b) M. Mendez, V.
Mamane, A. Fꢂrstner, Chemtracts 2003, 16, 397;
c) G. C. Lloyd-Jones, Org. Biomol. Chem. 2003, 1, 215;
d) A. M. Echavarren, C. Nevado, Chem. Soc. Rev. 2004,
33, 431; e) I. Nakamura, Y. Yamamoto, Chem. Rev.
2004, 104, 2127; f) S. T. Diver, A. J. Giessert, Chem.
Rev. 2004, 104, 1317; g) A. S. K. Hashmi, Angew. Chem.
2005, 117, 7150; Angew. Chem. Int. Ed. 2005, 44, 6990;
h) Z. Zhang, G. Zhu, X. Tong, F. Wang, X. Xie, J.
Wang, L. Jiang, Curr. Org. Chem. 2006, 10, 1457; i) E.
Jimꢃnez-MfflÇez, A. M. Echavarren, Chem. Rev. 2008,
108, 3326; j) S. I. Lee, N. Chatani, Chem. Commun.
2009, 371; k) A. Fꢂstner, Chem. Soc. Rev. 2009, 38,
3208; l) C. Aubert, L. Fensterbank, P. Garcia, M. Mal-
acria, A. Simonneau, Chem. Rev. 2011, 111, 1954.
[2] For Pt-catalyzed reactions, see: a) J. Blum, H. Beer-
Kraft, Y. Badrieh, J. Org. Chem. 1995, 60, 5567; b) A.
Fꢂrstner, H. Szillat, F. Stelzer, J. Am. Chem. Soc. 2000,
122, 6785; c) A. Fꢂstner, F. Stelzer, H. Szillat, J. Am.
Chem. Soc. 2001, 123, 11863; d) C. Nevado, C. Ferrer,
A. M. Echavarren, Org. Lett. 2004, 6, 3191; e) C.
Ferrer, M. Raducan, C. Nevado, C. K. Claverie, A. M.
Echavarren, Tetrahedron 2007, 63, 6306; f) J-B. Xia, W-
B. Liu, T-M. Wang, S-L. You, Chem. Eur. J. 2010, 16,
6442. For Au-catalyzed reactions, see: g) C. Nieto-
Oberhuber, M. P. MuÇoz, E. BuÇuel, C. Nevado, D. J.
Cµrdenas, A. M. Echavarren, Angew. Chem. 2004, 116,
2456; Angew. Chem. Int. Ed. 2004, 43, 2402; h) A. S. K.
Hashmi, M. C. Blanco, E. Kurpejovic, W. Frey, J. W.
Bats, Adv. Synth. Catal. 2006, 348, 709; i) S. I. Lee,
S. M. Kim, M. R. Choi, S. Y. Kim, Y. K. Chung, W.-S.
Han, S. O. Kang, J. Org. Chem. 2006, 71, 9366; j) S. M.
Kim, J. H. Park, S. Y. Choi, Y. K. Chung, Angew.
Chem. 2007, 119, 6284; Angew. Chem. Int. Ed. 2007, 46,
6172. For Rh-catalyzed reactions, see: k) K. Ota, S. I.
Lee, J.-M. Tang, M. Takachi, H. Nakai, T. Morimoto,
H. Sakurai, K. Kataoka, N. Chatani, J. Am. Chem. Soc.
2009, 131, 15203; l) S. Y. Kim, Y. K. Chung, J. Org.
Chem. 2010, 75, 1281. For Ir-catalyzed reactions, see:
m) T. Shibata, Y. Kobayashi, S. Maekawa, N. Toshida,
K. Takagi, Tetrahedron 2005, 61, 9018; n) S. H. Sim,
S. I. Lee, J. H. Park, Y. K. Chung, Adv. Synth. Catal.
2010, 352, 317; o) E. Benedetti, A. Simonneau, A.
Hours, H. Amouri, A. Penoni, G. Palmisano, M. Malac-
ria, J. P. Goddard, L. Fensterbank, Adv. Synth. Catal.
2011, 353, 1908. For reviews, see: p) C. Bruneau,
Angew. Chem. 2005, 117, 2380; Angew. Chem. Int. Ed.
2005, 44, 2328; q) T. Shibata, Y. Kobayashi, S. Maeka-
wa, N. Toshida, K. Takagi, Tetrahedron 2005, 61, 9018;
r) L. Zhang, J. Sun, S. A. Kozmin, Adv. Synth. Catal.
Conclusions
We have demonstrated two reaction pathways leading
to compounds which are difficult to prepare by con-
ventional synthetic pathways: that is, two new rear-
rangements of bicycloACTHNUGRTENUNG[4.1.0]hept-2-enes to 2,4-penta-
dienals, 1-aryltetrahydro-1H-indendes, or 3-methyl-
ene-4-vinylcyclohex-1-enes which are found as sub-
structures in natural products having a diverse range
of biological activities.[10] The reaction pathways are
highly sensitive to the identity and position of (a) sub-
stituent(s) at the alkene moiety. Thus we can predict
the characteristics of a reaction product based on our
studies. Readily available enynes are used as starting
materials for the reaction. Moreover, the experimen-
tal simplicity is noteworthy. Further studies on the ap-
plication of bicycloACHTNUGRTENUNG[4.1.0]heptenes as molecular scaf-
folds and a comprehensive experimental and compu-
tational study will be reported in due course.
Experimental Section
General Procedure for the Tandem PtCl2-Catalyzed
Cycloisomerization and Thermal Reactions
PtCl2 and toluene (or xylene, 2 mL) were added to a
Schlenk flask equipped with a stirring bar and capped with a
rubber septum. The substrate (0.3 mmol) and toluene (or
xylene, 4 mL) were then added to the flask and heated. The
resulting mixture was reacted until the substrate was com-
pletely consumed (reaction monitored by TLC). The prod-
uct was purified by flash chromatography on a silica gel
column by eluting with n-hexane/ethyl acetate.
Supporting Information
Characterization data (1H and 13C NMR spectra, and HR-
MS) for substrates (1–32) and products (a, b, c, d, and e),
and crystal data of 4c (CCDC 778494) and 16d (CCDC
778495) (these data can also be obtained free of charge
from The Cambridge Crystallographic Data Centre via
Supporting Information.
Adv. Synth. Catal. 2012, 354, 179 – 186
ꢀ 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
185