ChemComm
Communication
Table 1 UV-visible and fluorescence measurements of DnV before and
after the reaction with HAuCl4ꢁ3H2O
(for up to eight months) nanosized gold particles (S9 in ESI†).
Considering the broad spectrum of utilization of viologen
motifs, the importance of phosphonate terminal groups in
biological applications2c and for hybrid material synthesis,14
and the outstanding catalytic and optical properties of gold
nanoparticles, promising applications can emerge from these
nanocomposite ‘‘ternary’’ hybrid systems.
AuNPsd
Viologen–PF6
D1V 282 (540)
Viologen+–AuCl4
Viologen@AuNPsc (nm)
ꢀ a,b
ꢀ a
282, 227
266, 227
264, 227
264, 226
289 (530)
269 (535)
293 (523)
294 (528)
45
8.5
7.5
7
D2V 266 (540)
D3V 264 (507)
D4V 265 (495)
a
b
UV-visible analysis (nm). The value between brackets correspond to
c
Notes and references
1 P. M. S. Monk, The viologen, physicochemical properties, synthesis and
applications of the salts of 4,40-bipyridine, Wiley, Chichester, UK,
1998.
the fluorescence measurements (nm). UV-Visible upon addition of
NaBH4 (nm). (The value between brackets corresponds to the charac-
teristic band of gold nanoparticles (nm)). Average particle size
measured using HRTEM.
d
2 (a) S. Asaftei and E. De Clercq, J. Med. Chem., 2010, 53, 3480–3488;
(b) S. Asaftei, D. Huskens and D. Schols, J. Med. Chem., 2012, 55,
10405–10413; (c) K. Ciepluch, N. Katir, A. El Kadib, A. Felczak,
K. Zawadzka, M. Weber, B. Klajnert, K. Lisowska, A.-M. Caminade,
M. Bousmina, M. Bryszewska and J. P. Majoral, Mol. Pharmaceutics,
2012, 9, 448–457; (d) K. Ciepluch, N. Katir, A. El Kadib, M. Weber,
A.-M. Caminade, M. Bousmina, J. Pierre Majoral and M. Bryszewska,
J. Lumin., 2012, 132, 1553–1563.
3 (a) H. Li, D.-X. Chen, Y.-L. Sun, Y. B. Zheng, L.-L. Tan, P. S. Weiss
and Y.-W. Yang, J. Am. Chem. Soc., 2012, 135, 1570–1576; (b) L. Cen,
K. G. Neoh and E. T. Kang, Adv. Mater., 2005, 17, 1656–1661; (c) N. Fattori,
C. M. Maroneze, L. P. D. Costa, M. Strauss, I. O. Mazali and Y. Gushikem,
Colloids Surf., A, 2013, 437, 120–126.
4 J. L. Anderson, E. F. Bowden and P. G. Pickup, Anal. Chem., 1996, 68,
379–444.
Fig. 3 (a) SAED pattern showing the planes of D4V@Au. (b) Size distribution of
gold nanoparticles in D4V@Au calculated from HRTEM. (c) EDX cartographic
mapping of P (green) and Au (red) of D1V@Au showing homogeneous
distribution of metallic and dendritic phases.
5 (a) R. Sydam and M. Deepa, J. Mater. Chem. C, 2013, 1, 7930–7940;
(b) K. H. Boubbou and T. H. Ghaddar, Langmuir, 2005, 21, 8844–8851;
´
´
(c) M. Alvaro, G. A. Facey, H. Garcıa, S. Garcıa and J. C. Scaiano, J. Phys.
Chem., 1996, 100, 18173–18176; (d) M. Alvaro, B. Ferrer, V. Fornes and
H. Garcia, Chem. Commun., 2001, 2546–2547.
size of gold nanoparticles varies from 7 to 45 nm, with the
smallest dendrimer D1V being the least efficient to limit the
growth of the metallic objects (Table 1 and S7, ESI†). However,
regardless of the nature of the dendrimer used, no further
growth, bulky aggregates or metal precipitation can be observed
for up to eight months witnessing consequently the efficiency of
these dendrimers in long-term stabilization of gold nanoparticles
(Fig. 2 and S6, ESI†).
The SAED pattern shows a periodicity of d = 0.23 nm that
corresponds to the [111] plane of symmetry attributed to
crystalline gold nanoparticles (Fig 3a and S8, ESI†). The homo-
geneity of the nanocomposite DnV@Au has been assessed by
means of EDX mapping, looking at the amount of P, N and Au
at different regions. Nicely, an intimate dispersion and distri-
6 (a) X. Marguerettaz, A. Merrins and D. Fitzmaurice, J. Mater.
Chem., 1998, 8, 2157–2164; (b) P. Atienzar, M. de Victoria-Rodriguez,
O. Juanes, J. C. Rodriguez-Ubis, E. Brunet and H. Garcia, Energy
Environ. Sci., 2011, 4, 4718–4726.
7 (a) A. El Kadib, N. Katir, M. Bousmina and J. P. Majoral, New
J. Chem., 2012, 36, 241–255; (b) A.-M. Caminade and J.-P. Majoral,
J. Mater. Chem., 2005, 15, 3643–3649.
8 (a) N. Katir, J. P. Majoral, A. El Kadib, A.-M. Caminade and M. Bousmina,
Eur. J. Org. Chem., 2012, 269–273; (b) V.-A. Constantin, D. Bongard and
L. Walder, Eur. J. Org. Chem., 2012, 913–921.
9 (a) M. Mayor, J.-M. Lehn, K. M. Fromm and D. Fenske, Angew. Chem., Int.
Ed. Engl., 1997, 36, 2370–2372; (b) M. Gingras, A. Pinchart and C. Dallaire,
Angew. Chem., Int. Ed., 1998, 37, 3149–3151; (c) R. Dominique, B. Liu,
S. K. Das and R. Roy, Synthesis, 2000, 862–868.
10 J. Iehl, M. Frasconi, H.-P. Jacquot de Rouville, N. Renaud, S. M. Dyar,
N. L. Strutt, R. Carmieli, M. R. Wasielewski, M. A. Ratner, J.-F.
Nierengarten and J. F. Stoddart, Chem. Sci., 2013, 4, 1462–1469.
bution of the nanosized gold particles within the dendritic 11 (a) C. Galliot, A.-M. Caminade, F. Dahan and J. P. Majoral, Angew.
Chem., Int. Ed. Engl., 1993, 32, 1477–1479; (b) R. Kraemer, C. Galliot,
J. Mitjaville, A.-M. Caminade and J. P. Majoral, Heteroat. Chem.,
1996, 7, 149–154.
phase resulted in continuous regular organic–inorganic hybri-
dization at the nanoscale, with neither phase separation nor
clustering of any single phase (Fig. 3c and S9, ESI†).
To sum up, a series of linear and dendritic sub-structures in
which the number of viologen units varies from 1 to 24 have
12 F. M. Menger and V. A. Azov, J. Am. Chem. Soc., 2002, 124, 11159–11166.
13 (a) S. Link and M. A. El-Sayed, J. Phys. Chem. B, 1999, 103, 8410–8426;
´
(b) I. Ojea-Jimenez, N. G. Bastu´s and V. Puntes, J. Phys. Chem. C, 2011,
115, 15752–15757.
been successfully prepared and isolated. These macromolecular 14 (a) Y. Brahmi, N. Katir, A. Hameau, A. Essoumhi, E. M. Essassi,
A.-M. Caminade, M. Bousmina, J.-P. Majoral and A. El Kadib, Chem.
Commun., 2011, 47, 8626–8628; (b) Y. Brahmi, N. Katir, M. Ianchuk,
V. Colliere, E. M. Essassi, A. Ouali, A.-M. Caminade, M. Bousmina,
asterisks provide novel building blocks that couple the specificity
of viologen ‘‘molecular recognition’’ and ‘‘sterical hindrance’’
of dendrimers to efficiently exchange, deliver and stabilize
J. P. Majoral and A. El Kadib, Nanoscale, 2013, 5, 2850–2856.
This journal is ©The Royal Society of Chemistry 2014
Chem. Commun., 2014, 50, 6981--6983 | 6983