M. Khorasani-Motlagh et al. / Inorganica Chimica Acta 383 (2012) 72–77
77
plexes such as [FeIII(OEP)(pcyd)] [41] and [FeIII(OEP)(2,4-Me2pcyd)]
[43].
C
N
N
C
N
N
Acknowledgment
We thank the University of Sistan and Baluchestan (USB) for
financial support.
II
I
Scheme 2. Resonance structures of phenylcyanamide anionic ligand.
References
[1] R.K. Agarwal, H. Agarwal, Synth. React. Inorg. Met. Org. Chem. 31 (2001) 263.
[2] E.-C. Yang, P.-X. Dai, X.-G. Wang, X.-J. Zhao, Z. Anorg. Allg. Chem. 635 (2009)
346.
[3] M. Komiya, Y. Nishikido, Y. Umebayashi, S.-I. Ishiguro, J. Solution Chem. 31
(2002) 931.
[4] G. Adachi (Ed.), New Development of Studies on Rare Earth Complexes, Report
of a Priority Area Research Program 1994–1997, Daitoinsatsu, Osaka, 1997.
[5] G.R. Choppin, J. Less Common Met. 100 (1984) 141.
[6] J.-C.G. Bunzli, J.-R. Yersin, Helv. Chim. Acta 65 (1982) 2498.
[7] J.-C.G. Bunzli, J.-R. Yersin, C. Mabillard, Inorg. Chem. Acta 21 (1982) 1471.
[8] J.-C.G. Bunzli, C. Mabillard, J.-R. Yersin, Inorg. Chem. Acta 21 (1982) 4214.
[9] M. Komiyama, J. Biochem. 118 (1995) 665.
The phenylcyanamide anionic ligands had a resonance stabi-
lized three-atom -system, from which two pairs of non-bonding
p
electrons can be delocalized (Scheme 2). In resonance structure I,
the terminal nitrogen of cyanamide group will coordinate to the
metal center via the nitrile lone pair, which results in an ideal bond
angle of 180°. Resonance structure II will produce the ideal bond
angle of 120°. However, if the structure results in both I and II res-
onance states, the bond angle will be between two extremes. Elec-
tropositive metal ions and metal ions with strong
p-acceptor
[10] J. Yang, Q. Yue, G.-D. Li, J.-J. Cao, G.-H. Li, J.-S. Chen, Inorg. Chem. 45 (2006)
2857.
character favor the resonance structure I. In these cases, the bond
angle will be close to 180°, to maximize interaction with the elec-
tron pairs on the nitrogens [21].
The coordination configuration of cyanamide ligands strongly
depended on the nature and oxidation state of the metal atoms
[21]. As mentioned above, the coordination of the anionic cyana-
mide group to a strongly polarizing metal ion should increase the
[11] N. Sabbatini, M. Guardigli, J.M. Lehn, Coord. Chem. Rev. 123 (1993) 201.
[12] F.A. Hart, F.P. Laming, J. lnorg. Nucl. Chem. 26 (1964) 579.
[13] F.A. Hart, F.P. Laming, J. lnorg. Nucl. Chem. 27 (1965) 1605.
[14] H.A. Hussain, K. Iftikhar, Spectrochim. Acta, Part A 59 (2003) 1061.
[15] X.-J. Zheng, L.-P. Jin, Polyhedron 22 (2003) 2617.
[16] U.P. Singh, R. Kumar, J. Mol. Struct. 837 (2007) 214.
[17] A.Y. Rogachev, L.K. Minacheva, V.S. Sergienko, I.P. Malkerova, A.S. Alikhanyan,
V.V. Stryapan, N.P. Kuzmina, Polyhedron 24 (2005) 723.
[18] H.M. Badawi, W. Forner, J. Mol. Struct. (THEOCHEM) 673 (2004) 223.
[19] H. Chiniforoshan, N. Safari, J. MohammadNezhad, H. Hadadzadeh, A.H.
Mahmoudkhani, Inorg. Chim. Acta 359 (2006) 2101.
[20] R.J. Crutchley, M.L. Nakicki, Inorg. Chem. 28 (1989) 1955.
[21] R.J. Crutchley, R. Hynes, E. Gabe, Inorg. Chem. 29 (1990) 4921.
[22] W. Zhang, C. Bensimon, R.J. Crutchley, Inorg. Chem. 32 (1993) 5808.
[23] A.R. Rezvani, R.J. Crutchley, Inorg. Chem. 33 (1994) 170.
[24] W.B. Connick, R.E. Marsh, W.P. Schaefer, H.B. Gray, Inorg. Chem. 36 (1997) 913.
[25] G. Arena, G. Calogera, S. Campagna, L. Scolaro, V. Ricevuto, R. Romaeo, Inorg.
Chem. 37 (1998) 2763.
[26] H. Hadadzadeh, A.R. Rezvani, F. Belanger-Gariepy, J. Mol. Struct. 740 (2005)
165.
[27] D.T. Mapolelo, M. Al-Noaimi, R.J. Crutchley, Inorg. Chim. Acta 359 (2006) 1458.
[28] M. Khorasani-Motlagh, M. Noroozifar, S. Niromand, S. Khajeh, B.O. Patrick,
Inorg. Chim. Acta 362 (2009) 3785.
[29] M. Khorasani-Motlagh, M. Noroozifar, S. Niroomand, J. Saffari, J. Iran Chem.
Soc. 7 (2010) 807.
[30] A. Altomare, M.C. Burla, M. Camalli, G.L. Cascarano, C. Giacovazzo, A.
Guagliardi, A.G.G. Moliterni, G.R. Polidori, R. Spagna, J. Appl. Crystallogr. 32
(1999) 115.
contribution of resonance structure II, but strong
ions prefer bond angles of 180°. In this regard, Ru(III), a strong
acceptor, had been shown to coordinate to 2,3-Cl2pcyd- with a
bond angle 171°, while Cu(II) had far weaker - acceptor properties
with Cu(II)–cyanamide bond angles between 141° and 165°, and
Fe(III) had weaker -acceptor properties with Fe(III)–cyanamide
p-acceptor metal
p-
p
p
band angles between 143.9° and 168.53° in different complexes
[21,40,41]. Here, the bonds between the anionic cyanamide groups
and La(III) were relatively nonlinear, with angles of 162.7(5)°,
137(5)° and 150.4(5)° for C(51)–N(11)–La, C(37)–N(7)–La and
C(44)–N(9)–La, respectively. These data indicated the weak
p-
acceptor property of La(III) ion.
In reference to the Cambridge Structural Database, the C(37)–
N(7), C(44)–N(9) and C(51)–N(11) bond lengths were much longer
than that of a CN triple bond [42]. These observations were in
agreement with IR data: these data showed one strong absorption
band at 2100 cmꢁ1 that was close to the absorption band of
N@C@N bond, as previously reported by other researchers [20].
NCN was almost linear, with an angle of N(9)–C(44)–
N(10) = 175.1(8)°. These angles were 171.7(8)° and 169.7(7)° for
N(7)–C(37)–N(8) and N(11)–C(51)–N(12), respectively, with a lin-
ear bond between the anionic cyanamide group and La(III).
[31] Y.-H. Wan, L.-P. Jin, K.-Z. Wang, Chinese J. Chem. 20 (2002) 813.
[32] (a) A. Trzesowska, R. Kruszynski, Transition Met. Chem. 32 (2007) 625;
(b) N.S. Gill, R.H. Nuttall, D.E. Scaife, D.W. Sharp, J. Inorg. Nucl. Chem. 18 (1961)
79;
(c) A. Seminara, S. Giuffrida, A. Musumei, I. Fragala, Inorg. Chim. Acta 95 (1984)
201.
[33] W. Brzyska, W. Ozga, Polish J. Chem. 75 (2001) 43.
[34] D.M. Czakis-Sulikowska, J. Radwanska-Doczecalsk, J. Inorg. Nucl. Chem. 41
(1979) 1299.
Free anionic cyanamide ligands were anticipated to be planar, if
there were not any steric effects. This was easily explained by the
strong interaction of the cyanamide group with the phenyl ring
[22]. This interaction was apparently maintained upon coordina-
tion to La(III), and the torsion angles C(37)–N(8)–C(38)–C(43),
7.9(11)°, C(44)–N(10)–C(45)–C(50), 4.2(10)° and C(51)–N(12)–
C(52)–C(57), 0.7(13)°, showed that the phenyl rings were approx-
imately planar with cyanamide to optimize the interaction
between the phenyl rings and cyanamide groups. By considering
these torsion angles, we suggest that the coupling of the cyana-
mide groups with the phenyl ring in [La(phen)3(2,5-Cl2pcyd)3] is
noticeably high and is compatible with other cyanamide com-
[35] R.J. Crutchley, Coord. Chem. Rev. 219 (2001) 125.
[36] F. Biba, M. Groessl, A. Egger, A. Roller, C.G. Hartinger, B.K. Keppler, Eur. J. Inorg.
Chem. 28 (2009) 4282.
[37] L. Huaqiong, X. Huiduo, Z. Guoliang, J. Rare Earth 28 (2010) 7.
[38] C.-B. Liu, M.-X. Yu, X.-J. Zheng a, L.-P. Jin, S. Gao, S.-Z. Lu, Inorg. Chim. Acta 358
(2005) 2687.
[39] X.-J. Zheng, L.-P. Jin, J. Mol. Struct. 655 (2003) 7.
[40] M. Khorasani-Motlagh, M. Noroozifar, J. Saffari, B.O. Patrick, Inorg. Chim. Acta
362 (2009) 4721.
[41] M. Khorasani-Motlagh, N. Safari, M. Noroozifar, H. Shahroosvand, B.O. Patrick,
Inorg. Chim. Acta 362 (2009) 1260.
[42] F.H. Allen, O. Kennard, Chem. Des. Autom. News 8 (1993) 31.
[43] H. Shahroosvand, M. Khorasani-Motlagh, M. Noroozifar, B.O. Patrick, Anal. Sci.
24 (2008) 275.