34; c) B. W. D’Andrade, J. Brooks, V. Adamovich, M. E. Thompson,
S. R. Forrest, Adv. Mater. 2002, 14, 1032; d) J. Feng, F. Li, W. Gao,
S. Liu, Y. Wang, Appl. Phys. Lett. 2001, 78, 3947; e) M. Cocchi,
J. Kalinowski, D. Virgili, V. Fattori, D. Develay, J. A. G. Williams, Appl.
Phys. Lett. 2007, 90, 163508; f) E. L. Williams, K. Haavisto, J. Li,
G. E. Jabbour, Adv. Mater. 2007, 19, 197.
on silica gel (eluent: heptane/ethyl acetate, 95/5 v/v, Rf = 0.4). 5b was
obtained as a yellow-orange solid (yield = 70%, 0.7 mmol, 374 mg).
1
TTGA,10% = 365 °C; H NMR (300 MHz, CD2Cl2, δ): 7.74 (ddd, 4J(H,H)
= 1.5 Hz, 3J(H,H) = 6.9 Hz, 3J(P,H) = 13.8 Hz, 2H, Hortho), 7.58 (m, 1H,
H
H
fluorenyl), 7.51 (d, 3J(H,H) = 7.8 Hz, 1H, Hfluorenyl), 7.41–7.31 (m, 4H, 2
meta, Hpara, Hfluorenyl) 7.28 (s, 1H, Hfluorenyl) 7.23–7.20 (m, 2H, Hfluorenyl),
7.16 (d, J(H,H) = 7.8 Hz, 1H, Hfluorenyl) 7.08 (AB system, 3J(H,H) =
3.6 Hz, Δυ = 150.1 Hz, 2H, Hthienyl), 2.87 (m, 2H, C=CCH2), 2.74 (m,
2H, C=CCH2), 2.38 (s, 3H, CH3thienyl), 1.64 (m, 4H, CH2), 1.29 (s, 6H,
CH3fluorenyl); 13C NMR (75 MHz, CD2Cl2, δ): 154.3 (s, Cfluorenyl), 153.9 (s,
[5] a) Y. Sun, S. R. Forrest, Appl. Phys. Lett. 2007, 91, 263503;
b) M.A. Baldo, C. Adachi, S. R. Forrest, Phys. Rev. B: Condens.
Matter 2000, 62, 10967; c) J. Liu, L. Chen, S. Shao, Z. Xie, Y. Cheng,
Y. Geng, L. Wang, X. Jing, F. Wang, Adv. Mater. 2007, 19, 4224.
[6] a) B. Geffroy, N. Lemaitre, J. Lavigne, C. Denis, P. Maisse,
P. Raimond, Nonlinear Opt. Quantum Opt. 2007, 37, 9; b) Z. L. Zhang,
X. Y. Jiang, W. Q. Zhu, X. Y. Zheng, Y. Z. Wu, S. H. Xu Synth. Met.
2003, 137, 1142; c) C. H. Chuen, Y. T. Tao, Appl. Phys. Lett. 2002,
81, 4499; d) H. Aziz, Z. D. Popovic, Appl. Phys. Lett. 2002, 80, 2180;
e) X.-M. Yu, H.-S. Kwok, W.-Y. Wong, G.-J. Zhou, Chem. Mater. 2006,
18, 5097; M.-F. Lin, L. Wang, W.-K. Wong, Appl. Phys. Lett. 2007, 91,
073517; f) T.-W. Lee, T. Noh, B.-K. Choi, M.-S. Kim, D. Woo Shin,
J. Kido, Appl. Phys. Lett. 2008, 92, 043301; g) H. Choukri,
A. Fischer, S. Forget, S. Chénais, M.-C.Castex, D. Adès, A. Siove,
B. Geffroy Appl. Phys. Lett. 2006, 89, 183513; h) A. Köhnen, M. Irion,
M. C. Gather, N. Rehmann, P. Zacharias, K. Meerholz, J. Mater.
Chem. 2010, 20, 3301; i) P. Q. Chen, P. Xue, W. Xie, Y. Duan,
G. Xie, Y. Zhao, J. Hou, S. Liu, L. Zhang, B. Li, Appl. Phys. Lett. 2008,
93, 153508; j) C. H. Chuen, Y. T. Tao, F. I. Wu, C. F. Shu, Appl. Phys.
Lett. 2004, 85, 4609; k) J. Lee, J.-I Lee, J. Yeob Lee, H. Yong Chu,
Appl. Phys. Lett. 2009, 94, 193305; l) H. Wu, G. Zhou, J. Zou,
C.-L. Ho, W.-Y. Wong, W. Yang, J. Peng, Y. Cao, Adv. Mater. 2009,
21, 1; m) L. Wang, G. Lei, Y. Qiu J. Appl. Phys. 2005, 97, 114503;
n) U. Giovanella, M. Pasini, C. Freund, C. Botta, W. Porzio,
S. Destri J. Phys. Chem. C 2009, 113, 2290; o) H.-H. Huang,
S.-Y. Chu, P.-C. Kao, Y.-C. Chen, Thin Solid Films 2008, 516, 5669.
[7] a) G. Schwartz, M. Pfeiffer, S. Reineke, K. Walzer, K. Leo, Adv. Mater.
2007, 19, 3672; b) Z. Zhang, Q. Wang, Y. Dai, Y. Liu, L. Wang,
D. Ma, Org. Electron. 2009, 10, 491.
[8] a) M. A. Baldo, D. F. O’Brien, Y. You, A. Shoustikov, S. Sibley,
M. E. Thompson, S. R. Forrest, Nature 1998, 395, 151;
b) D. F. O’Brien, M. A. Baldo, M. E. Thompson, S. R. Forrest, Appl.
Phys. Lett. 1999, 74, 442; c) C. Adachi, M. A. Baldo, M. E. Thompson,
S. R. Forrest, J. Appl. Phys. 2001, 90, 5048; d) M. A. Baldo, C. Adachi,
S. R. Forrest, Phys. Rev. B: Condens. Matter 2000, 62, 10967; e) Y. Sun,
S. R. Forrest, Appl. Phys. Lett. 2007, 91, 263503; f) L. Xiao, Z. Chen,
B. Qu, J. Luo, S. Kong, Q. Gong, J. Kido, Adv. Mater. 2011, 23, 926.
[9] a) N. C. Giebink, S. R. Forrest, Phys. Rev. B: Condens. Matter 2009,
77, 235215; b) J. Kalinowski, W. Stampor, J. Szmytkowski, D. Virgili,
M. Cocchi, V. Fattori, C. Sabatini, Phys. Rev. B: Condens. Matter
2009, 74, 085316; c) Q. Wang, J. Q. Ding, Y. X. Cheng, L. X. Wang,
D. G. Ma, J. Phys. D: Appl. Phys. 2009, 42, 065106; d) Q. Wang,
C. L. Ho, Y. Zhao, D. Ma, W. Y. Wong, L. Wang, Org. Electron. 2010,
11, 238.
Cfluorenyl), 148.9 (d, 2J(P,C) = 22.1 Hz, Cβ), 143.9 (d, 2J(P,C) = 22.4 Hz, Cβ),
142.5 (s, Cthienyl), 139.1 (s, Cfluorenyl), 139.0 (s, Cfluorenyl), 133.4 (d, 1J(P,C)
= 82.0 Hz, Cipso), 133.3 (d, 2J(P,C) = 17.1 Hz, Cthienyl), 132.2 (d, 4J(P,C) =
2.9 Hz, CHpara), 131.8 (d, 2J(P,C) = 12.3 Hz, Cfluorenyl), 130.9 (d, 2J(P,C)
= 11.5 Hz, CHortho), 130.1 (d, 1J(P,C) = 72.0 Hz, Cα), 129.1 (d, 3J(P,C)
= 12.3 Hz, CHmeta), 129.0 (d, 1J(P,C) = 81.7 Hz, Cα), 128.6 (d, 4J(P,C)
= 5.7 Hz, CHthienyl), 128.4 (d, 3J(P,C) = 5.8 Hz, CHfluorenyl), 127.8 (s,
CHfluorenyl), 127.4 (s, CHfluorenyl), 126.0 (s, CHthienyl), 123.7 (d, 3J(P,C) =
5.5 Hz, CHfluorenyl), 123.0 (s, CHfluorenyl), 120.4 (s, CHfluorenyl), 120.0 (s,
CHfluorenyl), 47.1 (s, CH3fluorenyl), 29.3 (s, C=CCH2), 29.1 (s, C=CCH2), 27.2
(s, CH3fluorenyl), 27.1 (s, CH3fluorenyl), 23.2 (s, CH2), 23.0 (s, CH2), 15.4 (s,
CH3thienyl); 31P NMR (121 MHz, CD2Cl2, δ): 52.5 (s); HRMS (ESI, m/z):
[M + H]+ calcd for C34H32PS2, 535.16831; found, 535.1701. Anal. calcd for
C34H31PS2: C 76.37, H 5.84, S 11.99; found: C 76.28, H 6.02, S 12.05.
Supporting Information
Supporting Information is available from the Wiley Online Library or
from the author.
Acknowledgements
This work was supported by the Ministère de la Recherche et de
l’Enseignement Supérieur, the Institut Universitaire de France, the CNRS,
the Région Bretagne, the ANR PSICO, Indo-French “Joint Laboratory
for Sustainable Chemistry at the Interfaces” and COST CM0802
(Phoscinet). The authors are grateful to D. Aldakov for the PL thin-film
measurements, to Dr. S. Forget (LPL, University Paris 13) for the Förster
radius calculation and to C. Lescop for the X-ray diffraction studies.
Received: August 24, 2011
Published online: December 5, 2011
[1] a) C. W. Tang, S. A. VanSlyke, Appl. Phys. Lett. 1987, 51, 913;
b) C. Adachi, S. Tokito, T. Tsutsui, S. Saito, Jpn J. Appl. Phys. 1988,
27, 1269; c) C. W. Tang, S. A. VanSlyke, C. H. Chen, J. Appl. Phys.
1989, 65, 3610.
[2] a) Organic Light Emitting Devices: Synthesis Properties and Applica-
tions, (Eds: K. Müllen, U. Scherf), Wiley-VCH, Weinheim, Germany
2006; b) K. Müllen, G. Wegner, Electronic Materials: The Oligomer
Approach, Wiley-VCH, Weinheim, Germany 1998; c) A. Mishra,
C.-Q. Ma, J. L. Segura, P. Bäuerle, in Handbook of Thiophene-Based
Materials, Volume One: Synthesis and Theory, (Eds: I. F. Perepichka,
D. F. Perepichka), John Wiley and Sons, Chichester, UK 2009, Ch. 1;
d) S. Yamaguchi, K. Tamao, Chem. Lett. 2005, 34, 2; e) H. Tsuji,
K. Sato, Y. Sato, E. Nakamura, J. Mater. Chem. 2009, 19, 3364.
[3] a) B. W. D’Andrade, S. R. Forrest, Adv. Mater. 2004, 16, 1585;
b) K. T. Kamtekar, A. P. Monkman, M. R. Bryce, Adv. Mater.
2010, 22, 572; c) B. W. D’Andrade, Nat. Photonics 2007, 1, 33;
d) M. C. Gather, A. Köhnen, K. Meerholz, Adv. Mater. 2011, 23, 233.
[4] a) Y. Liu, M. Nishiura, Y. Wang, Z. Hou, J. Am. Chem. Soc. 2006, 128,
5592; b) M. Mazzeo, V. Vitale, F. Della Sala, M. Anni, G. Barbarella,
L. Favaretto, G. Sotgiu, R. Cingolani, G. Gigli, Adv. Mater 2005, 17,
[10] a) B. Geffroy, P. Roy, C. Prat, Polym. Int. 2006, 55, 57210; b) S. Tao,
Z. Peng, X. Zhang, S. Wu, J. Luminescence 2006, 121, 568.
[11] S. Forget, S. Chenais, D. Tondelier, B. Geffroy, I. Grozhyk,
M. Lebental, E. Ishow, J. Appl. Phys. 2010, 108, 064509.
[12] O. Fadhel, M. Gras, N. Lemaitre, V. Deborde, M. Hissler, B. Geffroy,
R. Réau, Adv. Mater. 2009, 21, 1261.
[13] a) P. J. Fagan, W. A. Nugent, J. Am. Chem. Soc. 1988, 110, 231013;
b) P. J. Fagan, W. A. Nugent, J. C. Calabrese, J. Am. Chem. Soc. 1994,
116, 1880.
[14] a) K. Sonogashira, Y. Tohda, N. Hagihara, Tetrahedron Lett. 1975,
446714; b) M. Mio, L. Kopel, J. Braun, T. Gadzikwa, K. Hull, R. Bris-
bois, C. Markworth, P. Grieco, Org. Lett. 2002, 4, 3199.
[15] a) H.-C. Su, O. Fadhel, C.-J. Yang, T.-Y. Cho, C. Fave, M. Hissler,
C.-C. Wu, R. Réau, J. Am. Chem. Soc. 2006, 128, 983;
©
wileyonlinelibrary.com
Adv. Funct. Mater. 2012, 22, 567–576
2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
575