´
Z. Csok et al.
718
(4) Vriezema, D.M.; Aragones, M.C.; Elemans, J.A.A.W.;
Cornelissen, J.J.L.M.; Rowan, A.E.; Nolte, R.J.M. Chem.
Rev. 2005, 105, 1445–1489.
(5) (a) Cram, D.J.; Karbach, S.; Kim, Y.H.; Baczynskyj, L.;
Kalleymeyn, G.W. J. Am. Chem. Soc. 1985, 107, 2575–
2576; (b) Cram, D.J.;; Karbach, S.; Kim, Y.H.; Baczynskyj,
L.; Marti, K.; Sampson, R.M.; Kalleymeyn, G.W. J. Am.
Chem. Soc. 1988, 110, 2554–2560.
(6) (a) Warmuth, R.; Yoon, J. Acc. Chem. Res. 2001, 34,
95–105; (b) Jasat, A., Sherman, J.C. Chem. Rev. 1999, 99,
931–967.
(7) Liu, X.; Warmuth, R. J. Am. Chem. Soc. 2006, 128,
14120–14127.
authors, and denoted as PBEPBE. The 6-31G(d,p) basis set
(27) was used throughout this study. For the stationary
point, the Hessian was evaluated to characterise the
genuine minimum (no imaginary frequency). NPA and
natural bond orbital analysis (28) were carried out at the
same level of theory as the one used for geometry
optimisation. For the calculations, the Gaussian 03 suite of
programs was used (29). QTAIM analysis of the wave
function was carried out with the AIM2000 software (30)
to investigate the electron density of the optimised
structure.
(8) (a) Heinz, T.; Rudkevich, D.M.; Rebek, J., Jr. Angew. Chem.
Int. Ed. Engl. 1999, 38, 1136–1139; (b) MacGillivray, L.R.;
Atwood, J.L. Nature 1997, 389, 469–472; (c) Cave,
G.W.V.; Ferrarelli, M.C.; Atwood, J.L. Chem. Commun.
2005, 2787–2789; (d) MacGillivray, L.R.; Diamente, P.R.;
Reid, J.L.; Rippmeester, J.A. Chem. Commun. 2000, 359–
360; (e) Botta, B.; Cassani, M.; D’Acquarica, I.; Subissati,
D.; Zappia, G.; Delle Monache, G. Curr. Org. Chem. 2005,
9, 1167–1202.
(9) (a) Moran, J.R.; Karbach, S.; Cram, D.J. J. Am. Chem. Soc.
1982, 104, 5826–5828; (b) Cram, D.J., Karbach, S., Kim,
H.E., Knobler, C.B., Maverick, E.F., Ericson, J.L.,
Helgeson, R.C. J. Am. Chem. Soc. 1988, 110, 2229–2237.
(10) Timmerman, P.; Verboom, W.; Reinhoudt, D.N. Tetrahe-
dron 1996, 52, 2663–2704.
4.5 Host–guest complexation experiments
The host–guest complex formation ability of two
deepened cavitands (7 and 8) towards 4-chloro-benzotri-
fluoride (13) was investigated using PL method in
chloroform. Samples containing 1024 M of 7 or 8 were
prepared for these experiments, and the PL spectra of the
host molecules were recorded both in the absence and in
the presence of 4-chloro-benzotrifluoride as a guest. The
concentration of the guest was varied from 1 £ 1024 M up
to 9 £ 1024 M through 1 £ 1024 M steps. The samples
were excited at 395 nm and the PL peak of the host
obtained at 430 nm was used for data evaluation. A highly
sensitive Fluorolog t3 spectrofluorometric system (Jobin-
Yvon/SPEX) was used for data collection; a photon
counting method with 0.2 s integration time was applied.
Excitation and emission bandwidths were set to 1 nm. One
millimetre layer thickness of the fluorescent probes with
front face detection was used to eliminate the inner filter
effect. The stoichiometry of the formed complexes was
checked by Job’s method. The Benesi–Hildebrand method
was used to determine the stability constants at all
temperatures (31). The van’t Hoff theory was applied to
calculate the thermodynamic parameters of the
interactions.
(11) (a) Ma, S.; Rudkevich, D.M.; Rebek, J., Jr. J. Am. Chem.
¨
Soc. 1998, 120, 4977–4981; (b) Aakeroy, C.B.; Schultheiss,
N.; Desper, J. Org. Lett. 2006, 12, 2607–2610.
(12) (a) Moran, J.R.; Ericson, J.L.; Dalcanale, E.; Bryant, J.A.;
Knobler, C.B.; Cram, D.J. J. Am. Chem. Soc. 1991, 113,
5707–5714; (b) Tucci, F.C.; Rudkevich, D.M.; Rebek, J., Jr.
J. Org. Chem. 1999, 64, 4555–4559.
(13) (a) Starnes, S.D.; Rudkevich, D.M.; Rebek, J., Jr. J. Am.
Chem. Soc. 2001, 123, 4659–4669; (b) Tucci, F.C.; Renslo,
A.R.; Rudkevich, D.M.; Rebek, J., Jr. Angew. Chem. Int. Ed.
2000, 39, 1076–1079.
(14) (a) Barrett, E.S.; Irwin, J.L.; Picker, K.; Sherburn, M.S.
Austr. J. Chem. 2002, 55, 319–325; (b) Boerrigter, H.;
Verboom, W.; van Hummel, G.J.; Harkema, S.; Reinhoudt,
D.N. Tetrahedron Lett. 1996, 37, 5167-5170.
(15) Tunstad, L.M.; Tucker, J.A.; Dalcanale, E.; Weiser, J.;
Bryant, J.A.; Sherman, J.C.; Helgeson, R.C.; Knobler, C.B.;
Cram, D.J. J. Org. Chem. 1989, 54, 1305–1312.
(16) Roman, E.; Peinador, C.; Mendoza, S.; Kaifer, A.E. J. Org.
Chem. 1999, 64, 2577–2578.
Acknowledgements
(17) Sorrell, T.N.; Pigge, F.C. J. Org. Chem. 1993, 58, 784–785.
(18) Dueno, E.E.; Bisht, K.S. Tetrahedron 2004, 60,
10859–10868.
(19) Pellet-Rostaing, S.; Nicod, L.; Chitry, F.; Lemaire, M.
Tetrahedron Lett. 1999, 40, 8793–8796.
This work was supported by Science, Please! Research Team on
Innovation (SROP-4.2.2/08/1/2008-0011). Z.C. and T.K. thank
the Bolyai Grants of the Hungarian Academy of Sciences. The
authors also thank the Supercomputer Center of the National
Information Infrastructure Development (NIIF) Program, and
´
´
L. Mark (University of Pecs) for carrying out the MS
experiments.
(20) Wu, R.; Al-Azemi, T.F.; Bisht, K.S. Chem. Commun. 2009,
1822–1824.
(21) Hobza, P.; Selzle, H.L.; Schlag, E.W. J. Am. Chem. Soc.
1994, 116, 3500–3506.
(22) Espinosa, E.; Molins, E.; Lecomte, C. Chem. Phys. Lett.
1998, 285, 170–173.
References
(23) Higashi, T. NUMABS, rev. 2002; Rigaku/MSC, Inc., 1998.
(24) Sheldrick, G.M. Acta Cryst. 2008, A64, 112–122.
(25) Spek, A.L. J. Appl. Cryst. 2003, 36, 7–13.
(26) Perdew, J.P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett.
1996, 77, 3865–3868.
(1) Cram, D.J. Nature 1992, 356, 29–36.
(2) Cram, D.J.; Cram, J.M. Container Molecules and their
Guests; Royal Society of Chemistry: Cambridge, 1994.
(3) Cram, D.J.; Tanner, M.E.; Thomas, R. Angew. Chem. Int.
Ed. Engl. 1991, 30, 1024–1027.