contiguous stereogenic centers via simple reduction, epoxidation,
Simmons–Smith cyclopropanation and Suzuki coupling trans-
formations (Scheme 1). Discussions on reaction details, yields
and selectivities are summarized in ESIz-1, and some of the
compounds (+)-11aea and (+)-11aeb obtained from r-M and
Suzuki coupling sequence are drug-like molecules for the treatment
of cancer cells, which emphasizes the value of this r-M and
Suzuki coupling approach to the pharmaceutical industry.9
In summary, for the first time we have developed the chiral
primary amine/acid 4e/5b-catalyzed asymmetric r-M reaction of
ynones with aldehydes and indane-1,3-dione to furnish the spiranes
under ambient conditions via 2-aminobuta-1,3-enyne-catalysis.
We thank DST (New Delhi) for financial support. ChV and
PMK thank CSIR (New Delhi) for their research fellowship.
Scheme 1 Synthesis of drug-like spiranes for anticancer studies.
Reaction conditions: (a) NaBH4 (1.5 equiv.), dry CH3OH (0.25 M),
0–25 1C, 0.5 h; (b) Ar-B(OH)2 (2.0 equiv.), Pd(PPh3)4 (0.055 equiv.),
C6H5CH3 (2 mL), sodium succinate (4.2 equiv.), C6H5CH3 : H2O
(1.14 : 1; 1.5 mL), EtOH (1.4 mL), 90 1C, 8 h; (c) mCPBA (1.2 equiv.),
CH2Cl2 (0.2 M), 0–25 1C, 2 h; (d) CH2I2 (5.0 equiv.), Et2Zn
(5.0 equiv.), CH2Cl2 (0.065 M), ꢀ10 1C to 25 1C, 4 h.
Notes and references
1 For recent reviews on organocascade catalysis, see: (a) W. Notz,
F. Tanaka and C. F. Barbas III, Acc. Chem. Res., 2004, 37, 580;
(b) J. Seayad and B. List, Org. Biomol. Chem., 2005, 3, 719;
(c) G. Lelais and D. W. C. McMillan, Aldrichim. Acta, 2006, 39, 79;
(d) C. Grondal, M. Jeanty and D. Enders, Nat. Chem., 2010, 2, 167;
(e) D. B. Ramachary and S. Jain, Org. Biomol. Chem., 2011, 9, 1277.
2 For selected papers on asymmetric organocascade reactions, see:
(a) D. Enders, M. R. M. Huettl, C. Grondal and G. Raabe, Nature,
2006, 441, 861; (b) M. Rueping, A. P. Antonchick and
T. Theissmann, Angew. Chem., Int. Ed., 2006, 45, 3683; (c) B. Tan,
N. R. Candeias and C. F. Barbas III, Nat. Chem., 2011, 3, 473.
3 (a) D. L. Boger, Tetrahedron, 1983, 39, 2869; (b) K. A. Jørgensen,
Angew. Chem., Int. Ed., 2000, 39, 3558; (c) K. C. Nicolaou,
S. A. Snyder, T. Montagnon and G. Vassilikogiannakis, Angew.
Chem., Int. Ed., 2002, 41, 1668.
ð2Þ
4 (a) K. A. Ahrendt, C. J. Borths and D. W. C. MacMillan, J. Am.
Chem. Soc., 2000, 122, 4243; (b) S. B. Jones, B. Simmons and
D. W. C. MacMillan, J. Am. Chem. Soc., 2009, 131, 13606;
(c) T. Kano, Y. Tanaka, K. Osawa, T. Yurino and K. Maruoka,
Chem. Commun., 2009, 1956.
Although further studies are needed to firmly elucidate
the mechanism of r-M reactions through 4e/5b catalysis, the
reaction proceeds in a stepwise manner between in situ generated
2-aminobuta-1,3-enynes A and 2-arylidene-indan-1,3-diones B
(eqn (2)). Based on the crystal structure studies, we can rationalize
the observed high stereoselectivity through an allowed transition
state where the si-face of B approaches the re-face of enyne A due
to the strong hydrogen-bonding/electrostatic/CH–p interactions
and less steric hindrance as shown in TS-1. Formation of the
minor enantiomer may be explained by model TS-2, in which
there is strong steric hindrance between the alkyl portion of the
catalyst and the aryl group of B (eqn (2)). In situ formation of the
proposed reactive species 2-aminobuta-1,3-enyne A and imine A0
from 1a and 4d in CDCl3 at 25 1C was established through the
controlled NMR experiment (eqn (3)). In this NMR experiment,
we have observed only the formation of 1,2-addition products
A/A0 and we didn’t see the 1,4-addition intermediate D.
5 (a) D. B. Ramachary, N. S. Chowdari and C. F. Barbas III, Angew.
Chem., Int. Ed., 2003, 42, 4233; (b) L.-Y. Wu, G. Bencivenni,
M. Mancinelli, A. Mazzanti, G. Bartoli and P. Melchiorre, Angew.
Chem., Int. Ed., 2009, 48, 7196; (c) D. B. Ramachary, Y. V. Reddy,
A. Banerjee and S. Banerjee, Org. Biomol. Chem., 2011, 9, 7282.
6 (a) E. P. Serebryakov, A. G. Nigmatov, M. A. Shcherbakov and M. I.
Struchkova, Russ. Chem. Bull., 1998, 47, 82; (b) J.-L. Li, S.-L. Zhou,
B. Han, L. Wu and Y.-C. Chen, Chem. Commun., 2010, 46, 2665;
(c) Z. Jia, H. Jiang, J. Li, B. Gschwend, Q. Li, X. Yin, J. Grouleff,
Y. Chen and K. A. Jørgensen, J. Am. Chem. Soc., 2011, 133, 5053.
7 (a) J. Shen, T. T. Nguyen, Y. P. Goh, W. Ye, X. Fu, J. Xu and
C. H. Tan, J. Am. Chem. Soc., 2006, 128, 13692; (b) Y. Wang,
H. Li, Y. Wang, Y. Liu, B. M. Foxman and L. Deng, J. Am. Chem.
Soc., 2007, 129, 6364; (c) R. P. Singh, K. Bartelson, Y. Wang,
H. Su, X. Lu and L. Deng, J. Am. Chem. Soc., 2008, 130, 2422;
(d) Q. Wei and L.-Z. Gong, Org. Lett., 2010, 12, 1008.
8 (a) A. Wittkopp and P. R. Schreiner, Org. Lett., 2002, 4, 217;
(b) Y. Huang, A. K. Unni, A. N. Thadani and V. H. Rawal, Nature,
2003, 424, 146; (c) A. K. Unni, N. Takenaka, H. Yamamoto and
V. H. Rawal, J. Am. Chem. Soc., 2005, 127, 1336.
9 (a) D. Kuck, Chem. Rev., 2006, 106, 4885; (b) D. Pizzirani,
M. Roberti, S. Grimaudo, A. Di Cristina, R. M. Pipitone,
M. Tolomeo and M. Recanatini, J. Med. Chem., 2009, 52, 6936.
10 For selected papers on asymmetric cascade reactions from our group,
see: (a) D. B. Ramachary and M. Kishor, J. Org. Chem., 2007,
72, 5056; (b) D. B. Ramachary and R. Sakthidevi, Chem.–Eur. J.,
2009, 15, 4516; (c) D. B. Ramachary and Y. V. Reddy, J. Org. Chem.,
2010, 75, 74.
ð3Þ
11 For high-yielding synthesis of racemic products 6aa–an, 6bb–ee
and 7aa from 1a–e, 2a–n and 3 through pyrrolidine catalysis, see
Table S1 in ESIz-1.
With the medicinal applications in mind, we explored the
utilization of spiranes 6 bearing aryl bromide in the high-yielding
synthesis of functionalized chiral spiranes 8–11 having five to six
12 Recently Gouverneur et al. utilized unmodified ynones as starting
materials in organocatalytic asymmetric aldol reactions with aldehydes,
see: F. Silva, M. Sawicki and V. Gouverneur, Org. Lett., 2006, 8, 5417.
c
2254 Chem. Commun., 2012, 48, 2252–2254
This journal is The Royal Society of Chemistry 2012