Journal of the American Chemical Society
Communication
Comprehensive Heterocyclic Chemistry III; Katritzky, A., Ramsden, C.,
Scriven, E., Taylor, R., Eds.; Elsevier: Oxford, 2008; Vol. 2, p 1.
(d) Brandi, A.; Cicchi, S.; Cordero, F. M. Chem. Rev. 2008, 108, 3988.
(e) Ferraris, D.; Belyakov, S.; Li, W.; Oliver, E.; Ko, Y. S.; Calvin, D.;
Lautar, S.; Thomas, B.; Rojas, C. Curr. Top. Med. Chem. 2007, 7, 597.
(f) Couty, F.; Evano, G. Org. Prep. Proced. Int 2006, 38, 427. (g) De
Kimpe, N. In Comprehensive Heterocyclic Chemistry II; Padwa, A., Ed.;
Elsevier: Oxford, 1996; Vol. 1B, p 507. (h) Cromwell, N. H.; Phillips,
B. Chem. Rev. 1979, 79, 331.
(2) For reviews of azetidinones, see: (a) Alcaide, B.; Almendros, P.;
Aragoncillo, C. Chem. Rev. 2007, 107, 4437. (b) Dejaegher, Y.;
Kuz′menok, N. M.; Zvonok, A. M.; De Kimpe, N. Chem. Rev. 2002,
102, 29. (c) Alcaide, B.; Almendros, P. Chem. Soc. Rev. 2001, 30, 226.
(3) Selected examples for azetidines: (a) Denis, J.-B.; Masson, G.;
Retailleau, P.; Zhu, J. Angew. Chem., Int. Ed. 2011, 50, 5356.
(b) Shindoh, N.; Kitaura, K.; Takemoto, Y.; Takasu, K. J. Am. Chem.
Soc. 2011, 133, 8470. (c) Alcaide, B.; Almendros, P.; Luna, A.; Torres,
M. R. Adv. Synth. Catal. 2010, 352, 621. (d) Feula, A.; Male, L.;
Fossey, J. S. Org. Lett. 2010, 12, 5044. (e) Shindoh, N.; Takemoto, Y.;
Takasu, K. Chem. Eur. J. 2009, 15, 7026. (f) Ungureanu, I.; Klotz, P.;
Schoenfelder, A.; Mann, A. Chem. Commun. 2001, 958.
(4) Selected examples for azetidinones: (a) Li, G.-Q.; Li, Y.; Dai, L.-
X.; You, S.-L. Org. Lett. 2007, 9, 3519. (b) Zhao, L.; Li, C.-J. Chem.
Asian J. 2006, 1−2, 203. (c) Vargas-Sanchez, M.; Couty, F.; Evano, G.;
Prim, D.; Marrot, J. Org. Lett. 2005, 7, 5861. (d) Alcaide, B.;
Almendros, P.; Cabrero, G.; Ruiz, M. P. Org. Lett. 2005, 7, 3981.
(e) Lo, M. M.-C.; Fu, G. C. J. Am. Chem. Soc. 2002, 124, 4572.
(f) Durst, T.; Elzen, R. V. D.; LeBelle, M. J. J. Am. Chem. Soc. 1972, 94,
9261.
(5) For biological activity of azetidines or azetidinones, see:
(a) Clader, J. W. Curr. Top. Med. Chem. 2005, 5, 243. (b) Setti, E.
L.; Micetich, R. G. Curr. Med. Chem. 1998, 5, 101. (c) The Organic
Chemistry of β-Lactams; Georg, G. I., Ed.; VCH: New York, 1993.
(d) Neuhaus, F. C.; Georgeopapadakou, N. H. In Emerging Targets in
Antibacterial and Antifungal Chemoterapy; Sutcliffe, J.,
Georgeopapadakou, N. H., Eds.; Chapman and Hall: New York, 1992.
(6) For the synthesis of diiminoazetidines, see: (a) Chen, C. T.;
Chan, Y. S.; Tzeng, Y. R.; Chen, M. T. Dalton Trans. 2004, 2691.
(b) Schaffer, P.; Morel, P.; Britten, J. F.; Valliant, J. F. Inorg. Chem.
2002, 41, 6493. (c) Marchand, E.; Morel, G.; Sinbandhit, S. Eur. J. Org.
Chem. 1999, 1729. (d) Aumann, R.; Heinen, H. Chem. Ber. 1986, 119,
2005, 127, 16788. (i) Ong, T.-G.; Yap, G. P. A; Richeson, D. S. J. Am.
Chem. Soc. 2003, 125, 8100.
(11) Diiminoazetidines 1a−q and 3a−l were prepared by Xu’s
procedure (ref 7a and eq 1). 1b−q and 3a−l were new compounds. In
addition to symmetric carbodiimides R1NCNR3 (R1 = R3 = Cy,
t
iPr), asymmetric carbodiimides BuNCNR3 (R3 = Cy, Et), and
PhNCNR3 (R3 = Cy, cyclopentyl, and cyclobutyl) were also
appropriate substrates for the preparation of diiminoazetidines, in
which R3 group (R3 = Cy, Et, cyclopentyl, and cyclobutyl) was
regioselectively attached on the nitrogen atom of the azetidine ring.
Furthermore, 4-acetamidophenylsulfonyl azide could be utilized to
yield the desired 1q. See SI for more details.
(12) (a) Cho, S. H.; Kim, J. Y.; Kwak, J.; Chang, S. Chem. Soc. Rev.
2011, 40, 5068. (b) Yoo, W.-J.; Li, C.-J. Top. Curr. Chem. 2010, 292,
281. (c) Li, B.-J.; Yang, S.-D.; Shi, Z.-J. Synlett 2008, 949. (d) Ren, H.;
Li, Z.; Knochel, P. Chem. Asian J. 2007, 2, 416. (e) Deng, K.; Bensari,
A.; Cohen, T. J. Am. Chem. Soc. 2002, 124, 12106.
́ ́ ́
(13) (a) Wittine, K.; Benci, K.; Pavelic, S. K.; Pavelic, K.; Bratulic, S.;
Hock, K.; Balzarini, J.; Mintas, M. Med. Chem. Res. 2011, 20, 280.
̌
(b) Noll, S.; Kralj, M.; Suman, L.; Stephan, H.; Piantanida, I. Eur. J.
Med. Chem. 2009, 44, 1172. (c) Peng, X.; Hong, I. S.; Li, H.; Seidman,
M. M.; Greenberg, M. M. J. Am. Chem. Soc. 2008, 130, 10299.
(d) Beauchamp, L. M.; Serling, B. L.; Kelsey, J. E.; Biron, K. K.;
Collins, P.; Selway, J.; Lin, J.-C.; Schaeffer, H. J. J. Med. Chem. 1988,
31, 144.
́
2289. (e) L’abbe, G.; Sorgeloos, D.; Toppet, S. Tetrahedron Lett. 1982,
23, 2909. (f) Deyrup, J. A.; Vestling, M. M.; Hagan, W. V.; Yun, H. Y.
Tetrahedron 1969, 25, 1467.
(7) (a) Xu, X.; Cheng, D.; Li, J.; Guo, H.; Yan, J. Org. Lett. 2007, 9,
1585. See also a review: (b) Kim, S. H.; Park, S. H; Choi, J. H.;
Chang, S. Chem. Asian J. 2011, 6, 2618.
(8) Selected reviews of carbodiimide chemistry: (a) Nishiura, M.;
Hou, Z. Bull. Chem. Soc. Jpn. 2010, 83, 595. (b) Suzuki, T.; Zhang, W.-
X.; Nishiura, M.; Hou, Z. J. Synth. Org. Chem. Jpn. 2009, 67, 451.
(c) Shen, H.; Xie, Z. J. Organomet. Chem. 2009, 694, 1652. (d) Zhang,
W.-X.; Hou, Z. Org. Biomol. Chem. 2008, 6, 1720. (e) Edelmann, F. T.
Adv. Organomet. Chem. 2008, 57, 183. (f) Williams, A.; Ibrahim, I. T.
Chem. Rev. 1981, 81, 589.
(9) (a) Wang, Y.; Zhang, W.-X.; Wang, Z.; Xi, Z. Angew. Chem., Int.
Ed. 2011, 50, 8122. (b) Li, D.; Wang, Y.; Zhang, W.-X.; Zhang, S.;
Guang, J.; Xi, Z. Organometallics 2011, 30, 5278. (c) Li, D.; Guang, J.;
Zhang, W.-X.; Wang, Y.; Xi, Z. Org. Biomol. Chem. 2010, 8, 1816.
(d) Wang, Z.; Wang, Y.; Zhang, W.-X.; Hou, Z.; Xi, Z. J. Am. Chem.
Soc. 2009, 131, 15108. (e) Zhang, W.-X.; Li, D.; Wang, Z.; Xi, Z.
Organometallics 2009, 28, 882.
(10) (a) Zhang, W.-X.; Nishiura, M.; Mashiko, T.; Hou, Z. Chem.
Eur. J. 2008, 14, 2167. (b) Yu, R. T.; Rovis, T. J. Am. Chem. Soc. 2008,
130, 3262. (c) Xu, X.; Gao, J.; Cheng, D.; Li, J.; Qiang, G.; Guo, H.
Adv. Synth. Catal. 2008, 350, 61. (d) Volonterio, A.; Zanda, M. J. Org.
Chem. 2008, 73, 7486. (e) Zhang, W.-X.; Nishiura, M.; Hou, Z. Chem.
Eur. J. 2007, 13, 4037. (f) Zhang, W.-X.; Nishiura, M.; Hou, Z. Chem.
Commun. 2006, 3812. (g) Zhang, W.-X.; Nishiura, M.; Hou, Z. Synlett
2006, 1213. (h) Zhang, W.-X.; Nishiura, M.; Hou, Z. J. Am. Chem. Soc.
2929
dx.doi.org/10.1021/ja211486f | J. Am. Chem. Soc. 2012, 134, 2926−2929