K. Kumari et al. / Tetrahedron Letters 53 (2012) 1130–1133
1133
4. (a) Weber, L. Curr. Med. Chem. 2002, 9, 2085–2093; (b) Hulme, C.; Gore, V. Curr.
Med. Chem. 2003, 10, 51–80; (c) Arya, P.; Chou, D. T. H.; Baek, M.-G. Angew.
Chem., Int. Ed. 2001, 40, 339–346.
5. (a) Loupy, A. Microwave in Organic Synthesis, 2nd ed.; Wiley-VCH: Weinheim,
2006; (b) Kappe, C. O. Angew. Chem., Int. Ed. 2004, 43, 6250–6284; (c) Caddick,
S.; Fitzmaurice, R. Tetrahedron 2009, 65, 3325–3355; (d) Moseley, J. D.; Kappe,
C. O. Green Chem. 2011, 13, 794–806.
6. (a) Shore, G.; Morin, S.; Organ, M. G. Angew. Chem., Int. Ed. 2006, 45, 2761–
2766; (b) Kappe, C. O.; Stadler, A. Microwaves in Organic and Medicinal
Chemistry; Wiley-VCH: Weinheim, 2005; (c) Comer, E.; Organ, M. G. A. J. Am.
Chem. Soc. 2005, 127, 8160–8167.
7. (a) D’Souza, D. M.; Muller, T. J. J. Chem. Soc. Rev. 2007, 36, 1095–1108;
(b)Multicomponent Reactions; Zhu, J., Bienayme, H., Eds.; Wiley-VCH:
Weinheim, 2005; pp 33–75.
8. (a) Yadav, J. S.; Reddy, B. V. S.; Chandrasekhar, K. Tetrahedron Lett. 2001, 42,
4405–4407; (b) Yadav, J. S.; Reddy, B. V. S.; Chand, P. K. Tetrahedron Lett. 2001,
42, 4057–4059; (c) Yadav, J. S.; Reddy, B. V. S.; Srihari, P. Synlett 2001, 673–675;
(d) Yadav, J. S.; Reddy, B. V. S.; Reddy, J. S. S. J. Chem. Soc., Perkin Trans. 1 2002,
2390–2394; (e) Yadav, J. S.; Reddy, B. V. S.; Rao, K. V. R.; Kumar, G. G. K. S. N.
Tetrahedron Lett. 2007, 48, 5573–5576.
9. (a) Joule, J. A.; Mills, K. Heterocyclic Chemistry, 4th ed.; Blackwell: Oxford, 2000;
(b) Eicher, T.; Hauptmann, S. The Chemistry of Heterocycles; Wiley-VCH:
Weinheim, 2003; (c) Katrizky, A. R.; Pozharskii, A. F. Handbook of Heterocyclic
Chemistry, 2nd ed.; Pergamon: Amsterdam, 2000.
10. Elguero, J.; Goya, P.; Jagerovic, N.; Silva, A. M. S. In Pyrazoles as Drugs: Facts and
Fantasies in Targets in Heterocyclic Systems; Attanasi, O. A., Spinelli, D., Eds.;
Italian Society of Chemistry: Roma, 2002; Vol. 6, pp 52–98.
11. (a) Lamberth, C. Heterocycles 2007, 71, 1467–1502; (b) Nikolaus, M.
PharmaChem 2007, 6, 25–27.
12. (a) Navarro, J. A. R.; Lippert, B. Coord. Chem. Rev. 2001, 222, 219–250; (b) Danel,
A.; He, Z.; Milburn, G. H. W.; Tomasik, P. J. Mater. Chem. 1999, 9, 339–342.
13. (a) Klingele, J.; Dechert, S.; Meyer, F. Coord. Chem. Rev. 2009, 253, 2698–2741;
(b) Dias, H. V. R.; Lovely, C. J. Chem. Rev. 2008, 108, 3223–3238.
14. (a) Strecker, A. Liebigs Ann. Chem. 1850, 75, 27; (b) Dömling, A.; Ugi, I. Angew.
Chem., Int. Ed. 2000, 39, 3168; (c) Kappe, C. O. Acc. Chem. Res. 2000, 33, 879.
15. (a) Vuluga, D.; Legros, J.; Crousse, B.; Bonnet-Delpon, D. Green Chem. 2009, 11,
156–159; (b) Sibi, M. P.; Stanley, L. M.; Soeta, T. Org. Lett. 2007, 9, 1553–1556;
(c) Bonini, B. F.; Franchini, M. C.; Gentili, D.; Locatelli, E.; Ricci, A. Synlett 2009,
2328–2332.
16. (a) Knorr, L. Ber. 1883, 16, 2587; (b) Patel, M. V.; Bell, R.; Majest, S.; Henry, R.;
Kolasa, T. J. Org. Chem. 2004, 69, 7058–7065; (c) Peruncheralathan, S.; Khan, T.
A.; Ila, H.; Junjappa, H. J. Org. Chem. 2005, 70, 10030–10035; (d) Gosselin, F.;
O’Shea, P. D.; Webster, R. A.; Reamer, R. A.; Tillyer, R. D.; Grabowski, E. J. J.
Synlett 2006, 3267–3270; (e) Ko, Y. O.; Chun, Y. S.; Park, C.; Kim, Y.; Shin, H.;
Ahn, S.; Hong, J.; Lee, S. Org. Biomol. Chem. 2009, 1132–1136.
alyst was used (Table 1, entry 15). In order to screen the effect of
solvent and temperature, the model reaction was undertaken both
under conventional and microwave conditions using 5 mol % of
Sc(OTf)3 in different solvents at varying temperatures. The opti-
mum conversion was achieved under solvent-free conditions at
100 °C. The model reaction was also studied by varying microwave
power (150, 200 and 250 W) and it was concluded that 200 W
power output at 100 °C was needed to accomplish maximum con-
version to product 4a.
Under the optimized set of MW reaction conditions (5 mol % of
Sc(OTf)3, 200 W, 100 °C), a number of aldehydes 2 were subse-
quently allowed to react with phenyl hydrazine 1 and ethyl aceto-
acetate
3 to afford various pyrazole derivatives (4a–4o) in
reasonably good to excellent yields in 3–6 min (Table 2).21 Interest-
ingly, aromatic aldehydes with electron withdrawing groups gave
products with higher yields in comparison to those having electron
donating groups. It is worth noting that the reaction with o-salicyl-
aldehyde did not provide the expected product, and the reaction
stopped at the condensation stage with no further reaction with
ethyl acetoacetate. Heteroaromatic and aliphatic aldehydes such
as furan-2-carboxaldehdye, thiophene-2-carboxaldehyde, and
propionaldehyde also participated well in the reaction (Table 2,
entries 12, 13 and 15).
After completion of the reaction, dichloromethane (DCM) was
added to the reaction mixture and the catalyst was recovered by
filtration. After washing with DCM and drying in air, the recovered
catalyst was reused without any loss in its catalytic activity.
In conclusion, we have successfully developed a simple, green,
and efficient microwave assisted one-pot multicomponent synthe-
sis of pyrazole derivatives from easily available starting materials
using Sc(OTf)3 as a catalyst under solvent-free conditions. This pro-
tocol is attractive in terms of, atom economy, shortened reaction
time, simple and clean reaction profiles, tolerance of various func-
tional groups, and reusability of the catalyst.
17. Clapham, K. M.; Batsanov, A. S.; Bryce, M. R.; Tarbit, B. Org. Biomol. Chem. 2009,
7, 2155–2161.
Acknowledgments
18. (a) Goikhman, R.; Jacques, T. L.; Sames, D. J. Am. Chem. Soc. 2009, 131, 3042–
3048; (b) Wang, X.-j.; Tan, J.; Zhang, L. Org. Lett. 2000, 2, 3107–3109.
19. Shen, L.; Cao, S.; Liu, N.; Wu, J.; Zhu, L.; Qian, X. Synlett 2008, 1341–1344.
20. (a) Raghuvanshi, D. S.; Singh, K. N. Synlett 2011, 373–377; (b) Singh, N.; Singh,
S. K.; Khanna, R. S.; Singh, K. N. Tetrahedron Lett. 2011, 52, 2419–2422; (c)
Raghuvanshi, D. S.; Singh, K. N. Tetrahedron Lett. 2011, 52, 5702–5705.
21. Experimental procedure: A mixture of appropriate aldehyde (1 mmol), phenyl
hydrazine (1 mmol) and 5 mol % Sc(OTf)3 was placed in a 10-mL pressurized
vial and stirred for 5 min. To it was then added ethyl acetoacetate (1.2 mmol)
and was put in the ‘‘snap-on’’ cap. The reaction contents were irradiated in a
mono-mode CEM Discover microwave synthesis system using 200 W MW
power at 100 °C for appropriate time. After completion of the reaction (as
indicated by TLC), the mixture was cooled to rt and to it was added DCM and
stirred. The catalyst was recovered by filtration. The filtrate was washed with
satd aq brine solution, dried over anhydrous Na2SO4, filtered and evaporated
under reduced pressure. The crude product was purified by silica gel column
chromatography using ethyl acetate/hexane (1:10) to afford the pure product.
We are thankful to the Council of Scientific and Industrial Re-
search, New Delhi for financial assistance.
References and notes
1. Anastas, P.; Williamson, T. Green Chemistry, Frontiers in Benign Chemical
Synthesis and Procedures; Oxford Science Publications, 1998.
2. (a) Martins, M. A. P.; Frizzo, C. P.; Moreira, D. N.; Buriol, L.; Machado, P. Chem.
Rev. 2009, 109, 4140–4182; (b) Choudhary, G.; Peddinti, R. K. Green Chem. 2011,
13, 276–282; (c) Yan, S.; Chen, Y.; Liu, L.; He, N.; Lin, J. Green Chem. 2010, 12,
2043–2052; (d) Polshettiwar, V.; Varma, R. S. Tetrahedron Lett. 2008, 49, 879–
883.
3. (a) Burke, M. D.; Schreiber, S. L. Angew. Chem., Int. Ed. 2004, 43, 46–58; (b) Tan,
D. S. Nat. Chem. Biol. 2005, 1, 74–84; (c) Spandl, R. J.; Bender, A.; Spring, R. D.
Org. Biomol. Chem. 2008, 6, 1149–1158.