Communication
ISSN (Print) 0253-2964 | (Online) 1229-5949
BULLETIN OF THE
KOREAN CHEMICAL SOCIETY
Table 2. Substrate scope.a
Supporting Information. Additional supporting informa-
tion is available in the online version of this article.
References
1. For recent reviews on C─H activation, see:(a)T. Brückl,
R. D. Baxter, Y. Ishihara, P. S. Baran, Acc. Chem. Res. 2012,
45, 826. (b) C. Zhang, S.-L. You, RSC Adv. 2014, 4, 6173.
2. For example see:(a)C.-J. Li, Acc. Chem. Res. 2009, 42, 335.
(b) A. G. Condie, J. C. González-Gómez, C. R. J. Stephenson,
J. Am. Chem. Soc. 2010, 132, 1464. (c) S. A. Girard,
T. Knauber, C.-J. Li, Angew. Chem. Int. Ed. 2014, 53, 74.
3. (a) S. Murahashi, N. Komiya, H. Terai, T. Nakae, J. Am.
Chem. Soc. 2003, 125, 15312. (b) Z. Li, C.-J. Li, J. Am. Chem.
Soc. 2004, 126, 11810.
4. (a) B. Sundararaju, M. Achard, G. V. M. Sharma, C. Bruneau,
J. Am. Chem. Soc. 2011, 133, 10340. (b) X. Liu, B. Sun,
Z. Xie, X. Qin, L. Liu, H. Lou, J. Org. Chem. 2013, 78, 3104.
5. (a) H. E. Ho, Y. Ishikawa, N. Asao, Y. Yamamoto, T. Jin,
Chem. Commun. 2015, 51, 12764. (b) T. Suga, S. Iizuka,
T. Akiyama, Org. Chem. Front. 2016, 3, 1259. (c) J. B. Yu,
G. Peng, Z. J. Jiang, Z. K. Hong, W. K. Su, Eur. J. Org.
Chem. 2016, 2016, 5340. (d) W. Liu, Q. Su, P. Ju, B. Guo,
H. Zhou, G. Li, Q. Wu, ChemSusChem 2017, 10, 664.
(e) N. Sakai, T. Muraoka, S. Matsumoto, A. Mutsuro,
Y. Ogiwara, Synlett 2017, 28, 343. (f ) S. J. Kwon, M. G. Gil,
D. Y. Kim, Tetrahedron Lett. 2017, 58, 1592. (g) Y. H. Kim,
M. G. Gil, D. Y. Kim, Bull. Kor. Chem. Soc. 2017, 38, 1499.
6. (a) K. Gu, Z. Zhang, Z. Bao, H. Xing, Q. Yang, Q. Ren, Eur.
J. Org. Chem. 2016, 2016, 3939. (b) Z. Zhang, K. Gu, Z. Bao,
H. Xing, Q. Yang, Q. Ren, Tetrahedron 2017, 73, 3118.
7. (a) Y. Zheng, H.-Y. Xiong, J. Nie, M.-Q. Hua, J.-A. Ma,
Chem. Commun. 2012, 48, 4308. (b) H. W. Moon, D. Y. Kim,
Tetrahedron Lett. 2012, 53, 6569. (c) Y. K. Kang, H. J. Lee,
H. W. Moon, D. Y. Kim, RSC Adv. 2013, 3, 1332.
(d) C. W. Suh, C. W. Chang, K. W. Choi, D. Y. Kim, Tetrahe-
dron Lett. 2013, 54, 3651.
8. (a) Y. K. Kang, S. M. Kim, D. Y. Kim, J. Am. Chem. Soc.
2010, 132, 11847. (b) Y. K. Kwon, Y. K. Kang, D. Y. Kim,
Bull. Kor. Chem. Soc. 2011, 32, 1773. (c) D. Y. Kim, Bull.
Kor. Chem. Soc. 2013, 34, 3463. (d) M. H. Kim, D. Y. Kim,
Bull. Kor. Chem. Soc. 2013, 34, 3891. (e) Y. K. Kang,
D. Y. Kim, Adv. Synth. Catal. 2013, 355, 3131. (f ) C. W. Suh,
D. Y. Kim, Bull. Kor. Chem. Soc. 2014, 35, 98.
(g) Y. K. Kang, D. Y. Kim, Chem. Commun. 2014, 50, 222.
(h) C. W. Suh, S. B. Woo, D. Y. Kim, Asian J. Org. Chem.
2014, 3, 399. (i) C. W. Suh, D. Y. Kim, Org. Lett. 2014, 16,
5374. (j) C. W. Suh, H. J. Jeong, D. Y. Kim, Bull. Kor. Chem.
Soc. 2015, 36, 406. (k) M. H. Kim, H. J. Jeong, D. Y. Kim,
Bull. Kor. Chem. Soc. 2015, 36, 1155. (l) S. J. Kwon,
D. Y. Kim, Chem. Rec. 2016, 16, 1191. (m) T. H. Yoon,
D. Y. Kim, Synth. Commun. 2017, 47, 2109. (n) H. I. Jeong,
T. H. Yoon, D. Y. Kim, Bull. Kor. Chem. Soc. 2017, 38, 421.
(o) Y. J. Kim, Y. Kim, D. Y. Kim, Bull. Kor. Chem. Soc.
2017, 38, 578. (p) C. W. Suh, S. J. Kwon, D. Y. Kim, Org.
Lett. 2017, 19, 1334.
Entry
2, R
Time (h)
Yield (%)b
1
2
3
4
5
6
7
8
Ph
20
20
24
24
24
15
12
10
20
48
36
36
36
48
3a, 84
3b, 82
3c, 78
3d, 81
3e, 77
3f, 75
3g, 88
3h, 76
3i, 73
3j, 73
3k, 82
3l, 79
3m, 74
3n, 61
4-F,C6H4
4-Cl,C6H4
4-Br,C6H4
3-Br,C6H4
4-NO2,C6H4
4-OMe,C6H4
4-Me,C6H4
3-Me,C6H4
2-Me,C6H4
1-Naphthyl
2-Furyl
9
10
11
12
13
14
a
2-Thienyl
CH3CH2
Reaction conditions: N-phenyl tetrahydroisoquinoline (1, 0.3 mmol),
3-oxoalkanoic acid 2 (0.45 mmol), TBHP (0.6 mmol), catalyst (IV,
0.06 mmol), acetonitrile (2.0 mL) at room temperature.
Isolated yield.
b
(TEMPO) (Table 1, entry 15). The inhibitory effect of
TEMPO indicated that this reaction proceeded via radical
intermediate(s).
After determining the optimal reaction conditions, we
investigated the scope of this thiourea-catalyzed oxidative
coupling reaction of N-phenyl tetrahydroisoquinoline (1)
with 3-oxoalkanoic acid 2 in the presence of 20 mol% of
thiourea catalyst IV in acetonitrile at room temperature. As
shown in Table 2, various 3-oxoalkanoic acids 2 with
electron-donating or electron-withdrawing substituents in
aryl groups afforded the corresponding coupling products
with moderate to high yields (73–88%, Table 2, entries
1–10). The naphthyl- and heteroaryl-substituted β-keto
acids provided the desired products with high yields
(74–82%, Table 2, entries 11–13). In addition, alkyl-
substituted β-keto acid, 3-oxopentanoic acid, also afforded
the corresponding product 3n, but with relatively lower
yield (61%, Table 2, entry 14).
In conclusion, we presented a novel and environmentally
benign process for the thiourea-catalyzed oxidative cou-
pling reaction of N-phenyl tetrahydroisoquinoline (1) with
3-oxoalkanoic acid acids 2 in the presence of thiourea
catalyst IV.
Acknowledgment. This research was supported by Soon-
chunhyang University Research Fund.
Bull. Korean Chem. Soc. 2017
© 2017 Korean Chemical Society, Seoul & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
2