S. Lavielle, P. Bertus, J. Szymoniak, O. Lequin and P. Karoyan, Chem-
BioChem, 2011, 12, 1039–1042.
Nevertheless, this system has been successfully combined with
dipeptide chains to induce the formation of a hairpin-like struc-
ture driven by the formation of several cross-strand intramolecu-
lar hydrogen bonds. The conformational flexibility of this new
loop is still considerable and leads to two slightly different con-
formations. These results indicate that this kind of hybrid struc-
ture that constitutes a new family of foldamers are good
candidates to be considered, for example, in the development of
conformational switches, or in drug design. Further work to
fully control the conformational properties of this new module is
under process in our laboratory.
11 D. Yang, X.-W. Chang, D.-W. Zhang, Z.-F. Jiang, K. S. Song,
Y.-H. Zhang, N.-Y. Zhu, L.-H. Weng and M.-Q. Chen, J. Org. Chem.,
2010, 75, 4796–4805; S. Chatterjee, R. S. Roy and P. Balaram, J. R. Soc.
Interface, 2007, 4, 587–606; R. Rai, P. G. Vasudev, K. Ananda,
S. Raghothama, N. Shamala, I. L. Karle and P. Balaram, Chem.–Eur. J.,
2007, 13, 5917–5926.
12 M. N. Piña, B. Soberats, C. Rotger, P. Balester, P. M. Deyà and A. Costa,
New J. Chem., 2008, 32, 1919–1923; R. Prohens, M. C. Rotger, M.
N. Piña, P. M. Deyà, J. Morey, P. Ballester and A. Costa, Tetrahedron
Lett., 2001, 42, 4933–4936; S. Tomas, R. Prohens, M. Vega,
M. C. Rotger, P. M. Deyà, P. Balester and A. Costa, J. Org. Chem., 1996,
61, 9394–9401.
13 M. C. Rotger, M. N. Piña, A. Frontera, G. Martorell, P. Ballester,
P. M. Deyà and A. Costa, J. Org. Chem., 2004, 69, 2302–2308.
14 C. Rotger, M. N. Piña, M. Vega, P. Ballester and A. Costa, Angew.
Chem., Int. Ed., 2006, 45, 6844–6848.
Acknowledgements
15 J. D. Fisk, D. R. Powell and S. H. Gellman, J. Am. Chem. Soc., 2000,
122, 5443–5447.
This research is supported by the Ministry of Science and Inno-
vation (MICINN) of Spain grant no. CTQ2008-00841/BQU and
MICINN Consolider-Ingenio grant no. CSD2010-00065. L. M is
grateful to the Ministry of Science and Innovation (MICINN) of
Spain for a fellowship.
16 L. Cipolla, C. Airoldi, D. Bini, M. Gregori, F. Marcelo, J. Jiménez-
Barbero and F. Nicotra, Eur. J. Org. Chem., 2011, 128–136.
17 The binding constants were calculated using HypNMR (Protonic Soft-
ware, version 2008). C. Frassineti, S. Ghelli, P. Gans, A. Sabatini,
M. S. Moruzzi and A. Vacca, Anal. Biochem., 1995, 231, 374;
C. Frassineti, L. Alderighi, P. Gans, A. Sabatini, A. Vacca and S. Ghelli,
Anal. Bioanal. Chem., 2003, 376, 1041.
18 T. Kolev, R. W. Seidel, H. Mayer-Figge, M. Spiteller, W. S. Sheldrick and
B. B. Koleva, Spectrochim. Acta, Part A, 2009, 72, 502–509.
19 A. P. Davis, S. M. Draper, G. Dunne and P. Ashton, Chem. Commun.,
1999, 2265–2266.
Notes and references
1 J. S. Nowick, E. M. Smith and M. Pairish, Chem. Soc. Rev., 1996, 25,
401–415.
2 C. M. Goodman, S. Choi, S. Shandler and W. F. DeGrado, Nat. Chem.
Biol., 2007, 3, 252–262; D. Yang, Y.-H. Zhang, B. Li, D.-W. Zhang,
J. C.-Y. Chan, N.-Y. Zhu, S.-W. Luo and Y.-D. Wu, J. Am. Chem. Soc.,
2004, 126, 6956–6966.
3 K. D. Stigers, M. J. Soth and J. S. Nowick, Curr. Opin. Chem. Biol.,
1999, 3, 714–723.
20 S. H. Gellman, G. P. Dado, C.-B. Liang and B. R. Adam, J. Am. Chem.
Soc., 1991, 113, 1164–1173.
21 The chemical shift observed for the amide proton of the dipeptide Boc-
GABA-Phe-OMe in acetonitrile (1mM, 298 K) is 6.9 ppm. The chemical
shift of this signal in chloroform (2 mM, 298 K) is 6.4 ppm.
22 E. S. Stevens, N. Sugawara, G. M. Bonora and C. Toniolo, J. Am. Chem.
Soc., 1980, 102, 7048–7050.
23 C. Rotger, B. Soberats, D. Quiñonero, A. Frontera, P. Ballester, J. Benet-
Buchholz, P. M. Deyà and A. Costa, Eur. J. Org. Chem., 2008, 1864–
1868.
24 The chemical shifts observed for the NH groups of 3 at 298 K in aceto-
nitrile are 6.9, 6.5 and 6.2 ppm corresponding to the hydrogens labelled
as b, a, and c, respectively. The CH2 g and d also show different chemical
shifts at 3.4 and 3.6 respectively.
25 The low solubility of 4 either in chloroform or acetonitrile prevented us
from running concentration- or temperature-dependent experiments by
NMR techniques.
4 S. J. Hershberger, S.-G. Lee and J. Chmielewski, Curr. Top. Med. Chem.,
2007, 7, 928–942.
5 J. M. Beierle, W. S. Horne, J. H. van Maarseveen, B. Waser, J. C. Reubi
and M. R. Ghadir, Angew. Chem., Int. Ed., 2009, 48, 4725–4729.
6 K. Suat Kee and J. D. S. Seetharama, Curr. Pharm. Des., 2003, 9, 1209–
1224; A. Giannis and T. Kolter, Angew. Chem., Int. Ed. Engl., 1993, 32,
1244–1267.
7 J. D. A. Tyndall, B. Pfeiffer, G. Abbenante and D. P. Fairlie, Chem. Rev.,
2005, 105, 793–826.
8 A. Pinsker, J. Einsiedel, S. Hearterich, R. Waibel and P. Gmeiner, Org.
Lett., 2011, 13, 3502–3505; R. F. Hirschmann, K. C. Nocolau,
A. R. Angeles, J. S. Chen and A. B. Smith III, Acc. Chem. Res., 2009,
42, 1511–1520; L. Lomlim, J. Einsiedel, F. W. Heinemann, K. Meyer and
P. Gmeiner, J. Org. Chem., 2008, 73, 3608–3611; D. Blomberg, P. Kreye,
C. Fowler, K. Brickmann and J. Kihlberg, Org. Biomol. Chem., 2006, 4,
416–423.
26 The split signals observed for this structural fragment are not only due to
the quite probably also occurring interconversion equilibrium E vs. Z of
the carbamate group. The carbamate is located at the end of the molecule
and can freely rotate without provoking the splitting of the ethylendi-
amine NH (d) signal.
9 F. Chen, N.-Y. Zhu and D. Yang, J. Am. Chem. Soc., 2004, 126, 15980–
15981; C. Gennari, B. Salom, D. Potenza, C. Longari, E. Fioravanzo,
O. Carugo and N. Sardone, Chem.–Eur. J., 1996, 2, 644–655.
10 C. Mothes, M. Larregola, J. Quancard, N. Goasdoué, S. Lavielle,
G. Chassaing, O. Lequin and P. Karoyan, ChemBioChem, 2010, 11, 55–
58; J. D. Fisk, D. R. Powell and S. H. Gellman, J. Am. Chem. Soc., 2000,
122, 5443–5447; K. Guitot, M. Larregola, T. K. Pradhan, J.-L. Vasse,
27 The chemical shifts observed for the NH groups of compound 4 are: NH
(a) at 7.14 ppm; NH (b) at 6.76 ppm; NH (c) at 7.07 ppm; NH (d) at 7.22
and 6.96 ppm; NH (e) 6.83 and 6.15 ppm; NH (g) 6.68 ppm.
28 The minimised structures shown here were calculated to illustrate the
experimental evidence of the existence of the two conformations
observed by 2D RMN experiments. No further assumptions were made
from them.
This journal is © The Royal Society of Chemistry 2012
Org. Biomol. Chem., 2012, 10, 1914–1921 | 1921