Macromolecules
Article
MHz) and a Bruker ARX-400 FT (1H: 400 MHz, 13C: 100.6 MHz)
̈
This material is available free of charge via the Internet at
using CDCl3 as internal reference unless otherwise indicated. The
chemical shifts (δ) and coupling constants (J) are expressed in ppm
and Hz, respectively. The following abbreviations were used to explain
the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, quint
= quintet, m = multiplet, br = broad. IR spectra were recorded on a
Perkin-Elmer 1710 spectrophotometer, on a Perkin-Elmer Paragon
500 FT-IR spectrophotometer or on a Perkin-Elmer Mattson Unicam
500 16PC FT-IR using a ZnSe crystal ATR accessory. High resolution
mass spectra (HRMS) were recorded with a Q-TOF 2 spectrometer in
the electrospray ionization (ESI) mode. Melting points were not
AUTHOR INFORMATION
Corresponding Author
■
40 00 62 86.
Notes
The authors declare no competing financial interest.
corrected and determined by using a Buchi Totolli apparatus. Merk
̈
silica gel 60 (70−230 mesh) was used for flash chromatography. Size
exclusion chromatography (SEC) analyses were performed at room
temperature in DMF at 80 °C with a setup consisting of a PL-GPC 50
plus Integrated GPC from Polymer laboratories-Varian and a series of
three columns PLgel 5 μm MIXED-D. The elution of the filtered
samples was monitored using simultaneous UV and refractive index
detections. The elution times were converted to molar mass using a
calibration curve based on low dispersity (Mw/Mn) polystyrene (PS)
standards.
General Procedure for the Synthesis of Polyurethanes. IPDI
(0.8 mL, 3.78 mmol) was added to PTMO-650 (2.45 g, 3.78 mmol) at
room temperature. A solution of catalyst (75.5 μmol, 0.02 mmol) in
THF (0.5 mL) was then added and the mixture stirred at 60 °C.
Aliquots were taken at various period of time and FT-IR spectra
recorded to monitor the time course of the reaction (see Figure 2 and
Supporting Information). After 18 h, the reaction mixture was
quenched with methanol and the polymer analyzed using SEC (Table
2).
Synthesis of Urea 12. Benzylisocyanate (200 μL, 1.63 mmol) was
added dropwise to a solution of TBD 2a (227 mg, 1.63 mmol) in THF
(6 mL) leading to an exothermic reaction. The homogeneous reaction
mixture was stirred 1 h at room temperature (ca. 17 °C). The solvent
was then removed under vacuum affording a viscous oil. A small
amount of ether was then added to precipitate traces of unreacted 2a.
The solid was removed by filtration and the filtrate was concentrated
under vacuum to afford the expected product 12 as a pale yellow oil
(397 mg, 89%). IR (neat): υ = 2932, 2852, 1664, 1543, 698 cm−1. 1H
NMR (C6D6, 300 MHz): δ = 12.2 (br s, 1H), 7.44−7.37 (m, 2H),
7.19−7.09 (m, 2H), 7.07−6.99 (m, 1H),4.68 (d, J = 5.6 Hz, 2H),
3.83−3.75 (m, 2H), 3.19 (t, J = 5.7 Hz, 2H), 2.42 (t, J = 6.2 Hz, 2H),
2.23 (t, J = 6.5 Hz, 2H), 1.29 (qt, J = 6.4 Hz, 2H), 1.25−1.15 ppm (m,
2H). 13C NMR (C6D6, 75 MHz): δ = 157.0, 149.8, 141.2, 127.9, 126.8,
49.0, 48.4, 44.7, 43.2, 40.1, 22.8, 22.2 ppm. HRMS (ESI): m/z calcd
for C15H21N4O [M + H]+, 273.1715; found, 273.1712.
General Procedure for the Synthesis of Adducts 13a,b, 14.
Benzylisocyanate (1.9 mmol) was added dropwise to a solution of
amidine (or guanidine) (1 mmol) in Et2O (1 mL) at 0 °C. The
homogeneous reaction mixture was then stirred 5 min at 0 °C. After
recrystallization of the crude mixture at −40 °C, the crystals were
filtered and washed with a small amount of ether affording the
expected compound as colorless solid.
ACKNOWLEDGMENTS
■
We thank the French “Agence Nationale de la Recherche”
(ANR-09-CP2D-15), and the French Ministry of Research and
Technology for financial support.
REFERENCES
■
(1) (a) Oertel, G. Polyurethane Handbook; Hanser Publishers:
Munich, Germany, 1985. (b) Wirpska, Z. Poly(urethane)s: Chemistry,
Technology, and Application: Ellis Horwood: London, 1993. (c) Becker,
R. L. Thiele, Isocyanate reactions in Polyurethane catalysis: CRC Press,
Inc.: Boca Raton, FL, 1996; p 6940. (d) Hepburn, C. Polyurethane
Elastomers; Springer: Berlin, 1992.
(2) (a) Bayer, O. Angew. Chem. 1947, 59, 257−272. (b) Bayer, O.;
Muller, E. Angew. Chem. 1960, 72, 934−939.
̈
(3) (a) Lipatova, T. E.; Bakalo, L. A.; Niselsky, Yu N.; Sirotinskaya, A.
L. J. Macromol. Sci.Chem. 1970, A4 (8), 1743−1758. (b) Frisch, K.
C.; Rumao, L. P. J. Macromol. Sci.Rev. Macromol. Chem. 1970, 5c,
103−149. (c) Luo, S. G.; Tan, H. M.; Zhang, J. G.; Wu, Y. J.; Pei, F.
K.; Meng, X. H. J. Appl. Polymer Sci. 1997, 65, 1217−1225.
(d) Majundar, K. K.; Kundu, A.; Das, I.; Roy, S. Appl. Organomet.
Chem. 2000, 14, 79−85.
(4) For an overview see: (a) Toxicological Profile for Tin and Tin
compounds, ATSDR (Agency for Toxic Substances and Disease
Registry) , 2005. (b) Revised assessment of the risks to health and the
environment associated with the use of the four organotin compounds
TBT, DBT, DOT and TPT, The Scientific Committee on Health and
Environmental Risks (SCHER), 2006.
(5) (a) Kamber, N. E.; Jeong, W.; Waymouth, R. M.; Pratt, R. C.;
Lohmeijer, B. G. G.; Hedrick, J. L. Chem. Rev. 2007, 107, 5813−5840.
(b) Raynaud, J.; Ciolino, A.; Baceiredo, A.; Destarac, M.; Bonnette, F.;
Kato, T.; Gnanou, Y.; Taton, D. Angew. Chem., Int. Ed. 2008, 47,
5390−5393. (d) Raynaud, J.; Gnanou, Y.; Taton, D. Macromolecules
2009, 42, 5996−6005.
(6) For the observations of similar reaction rates between organo-
and metal-based catalysts, see: McLaughlin, M.; Garcia Rubio, S.;
Muthyala, R.; Antunes, O. A. C.; Tilstam, U.; Zlota, A.; Yadav, G. D.;
Laird, T. Org. Process Res. Dev. 2006, 10, 853−865.
(7) Silva, A. L.; Bordado, J. C. Catal. Rev. 2004, 46, 31−51.
(8) (a) Bantu, B.; Manohar Pawar, G.; Decker, U.; Wurst, K.;
Schmidt, A. M.; Buchmeiser, M. R. Chem.Eur. J. 2009, 15, 3103−
3109. (b) Bantu, B.; Manohar Pawar, G.; Wurst, K.; Decker, U.;
Schmidt, A. M.; Buchmeiser, M. R. Eur. J. Inorg. Chem. 2009, 15,
1970−1976.
(9) (a) Cramail, H.; Boyer, A.; Cloutet, E.; Bakhiyi, R.; Alfos, C. WO
2011030076, FR2950051. (b) Cramail, H.; Boyer, A.; Cloutet, E.;
Alfos, C. WO 2011030075, FR2950052. (c) Cramail, H.; Boyer, A.;
Cloutet, E.; Alfos, C. WO 2011045536, FR2951166. (d) Palaskar, D.
V.; Boyer, A.; Cloutet, E.; Alfos, C.; Cramail, H. Biomacromolecules
2010, 11, 1202−1211. (e) Boyer, A.; Cloutet, E.; Tassaing, T.;
Gadenne, B.; Alfos, C.; Cramail, H. Green Chem. 2010, 12, 2205−
2213. (f) Palaskar, D. V.; Boyer, A.; Cloutet, E.; Le Meins, J. F.;
Gadenne, B.; Alfos, C.; Farcet, C.; Cramail, H. J. Polym. Sci., Part A:
Polym. Chem. 2012, DOI: 10.1002.
MTBD-2 BnNCO Adduct (14). Mp = 96−97 °C (THF/pentane).
IR (neat): υ = 2925, 1683, 1645, 1470, 1377, 751, 700 cm−1. 1H NMR
(C6D6, 300 MHz): δ = 7.79−7.73 (m, 2H), 7.56−7.50 (m, 2H), 7.25−
7.01 (m, 6H), 5.31 (dd, J = 11.7 Hz, J = 13.7 Hz, 2H), 5.06 (d, J = 14.1
Hz, 1H), 4.63−4.52 (m, 1H), 4.35 (d, J = 14.1 Hz, 1H), 2.55−2.42
(m, 2H), 2.30−2.08 (m, 4H), 1.79 (s, 3H), 1.72−1.47 (m, 2H), 1.25−
1.08 ppm (m, 3H). 13C NMR (C6D6, 75 MHz): δ = 153.7, 151.4,
140.5, 139.1, 130.0, 129.4, 128.5, 127.5, 126.9, 97.3, 47.8, 46.8, 45.7,
45.1, 42.2, 36.4, 35.7, 23.3, 20.5 ppm. HRMS (ESI): m/z calcd for
C24H30N5O2 [M + H]+, 420.23995; found, 420.2396.
ASSOCIATED CONTENT
■
S
* Supporting Information
General experimental procedures and information, synthesis
(10) (a) Lohmeijer, B. G. G.; Pratt, R. C.; Leibfarth, F.; Logan, J. W.;
Long, D. A.; Dove, A. P.; Nederberg, F.; Choi, J.; Wade, C.;
Waymouth, R. M.; Hedrick, J. L. Macromolecules 2006, 39, 8574−
and spectroscopic data for guanidines 9a,b, 10, time course
1
experiments, and the corresponding FT-IR and H NMR data.
2255
dx.doi.org/10.1021/ma2026258 | Macromolecules 2012, 45, 2249−2256