1238
A. Miyawaki et al. / Tetrahedron Letters 53 (2012) 1236–1239
Table 1
Intramolecular oxy-Michael reaction of 5
Entry
Conditions
4 (%)
21 (%)
Ratio 4:21
Recovered 5 (%)
1
2
3
4
5
6
7
8
9
tBuOK, THF, rt
Decomp.
Decomp.
Decomp.
22
34
42
32
1.5
46
Triton BÒ, MeOH, rt, 15 h
LiCl, DBU, CH3CN, 0ꢂ60 °C, 0.5 h
Cs2CO3, CH2Cl2, 0 °C, 6 h
3
7:3:1
2:6:1
2:6:1
4:6:1
38
32
27
31
80
23
Cs2CO3, 18-crown-6, CH2Cl2 0 °C, 10 min
Cs2CO3, 18-crown-6, CH2Cl2 ꢀ20 °C, 2 h
Cs2CO3, 18-crown-6, CH2Cl2, ꢀ30 °C, 2 h
Cs2CO3, 18-crown-6, CH2Cl2, ꢀ40 °C, 2 h
Cs2CO3, 21-crown-7, CH2Cl2, ꢀ20 °C, 1 h
13
16
7
Trace
12
3:8:1
References and notes
1. Macías, F. A.; Gallindo, J. L. G.; Valera, R. M.; Torres, A.; Mollinillo, J. M. G.;
Fronczek, R. Org. Lett. 2006, 8, 4513–4516.
2. Macías, F. A.; Valera, R. M.; Torres, A.; Mollinillo, J. M. G. Tetrahedron Lett. 1998,
39, 427–430.
3. Miyawaki, A.; Osaka, M.; Kanematsu, M.; Yoshida, M.; Shishido, K. Tetrahedron
2011, 67, 6753–6761.
4. Osaka, M.; Kanematsu, M.; Yoshida, M.; Shishido, K. Tetrahedron: Asymmetry
2010, 21, 2319–2320.
5. Kanematsu, M.; Soga, K.; Manabe, Y.; Morimoto, S.; Yoshida, M.; Shishido, K.
Tetrahedron 2011, 67, 4758–4766.
6. Nising, C. F.; Bräse, S. Chem. Soc. Rev. 2008, 37, 1218–1228.
7. Ko, S. S.; Klein, L. L.; Pfaff, K. P.; Kishi, Y. Tetrahedron Lett. 1982, 23, 4415–4418.
8. (a) Kanematsu, M.; Yoshida, M.; Shishido, K. Angew. Chem., Int. Ed. 2011, 50,
2618–2620; (b) Kobayashi, H.; Kanematsu, M.; Yoshida, M.; Shishido, K. Chem.
Commun. 2011, 47, 7440–7442.
Figure 3. Transition states of IMOM reaction.
9. Compound 4: mp 87.387.6 °C (Et2O/hexane); ½a D28
ꢁ
ꢀ63.5° (c 0.73 CHCl3); IR
(KBr) 3459, 2922, 1687, 1433, 1378, 1266, 1117, 1115, 1048 cmꢀ1
;
1H NMR
Table 2
(400 MHz, CDCl3) d 6.60 (1H, q, J = 1.2 Hz), 3.38 (1H, dd, J = 11.6 and 2.4 Hz),
3.25 (1H, d, J = 16.0 Hz), 2.87 (1H, d, J = 16.0 Hz), 2.312.21 (1H, m), 2.01 (3H, d,
J = 1.2 Hz), 1.811.74 (1H, m), 1.761.68 (OH, br, D2O exchangeable), 1.681.62
(1H, m), 1.511.44 (1H, m), 1.411.34 (1H, m), 1.05 (3H, s), 1.04 (3H, s), 0.80 (3H,
d, J = 6.8 Hz); 13C NMR (100 MHz, CDCl3) d 197.0 (C), 194.7 (C), 150.4 (CH),
135.9 (C), 82.1 (C), 77.4 (CH), 71.4 (C), 40.5 (CH2), 32.1 (CH), 26.8 (CH2), 26.3
(CH3), 24.8 (CH2), 24.4 (CH3), 17.3 (CH3), 16.0 (CH3); HRMS (ESI) calcd for
Reduction of 4 and completion of total synthesis of 1
C
15H23O4 267.1596 (M++H), found 267.1603.
10. Compound 21: mp 99.6100.7 °C (Et2O/hexane); ½a D26
ꢁ
+174.03° (c 0.22 CHCl3);
1H NMR (400 MHz,
Entry
Conditions
Yield (1 + 22, %)
Ratioa
IR (KBr) 3563, 2950, 1691, 1466, 1378, 1271, 1230 cmꢀ1
;
CDCl3) d 6.45 (1H, q, J = 1.6 Hz), 3.17 (1H, d, J = 16.4 Hz), 3.16 (1H, dd, J = 11.6
and 2.0 Hz), 2.77 (1H, d, J = 16.4 Hz), 2.13–2.01 (1H, m), 1.97 (3H, d, J = 1.6 Hz),
1.93–1.68 (OH, br, D2O exchangeable), 1.67–1.62 (2H, m), 1.55–1.41 (2H, m),
1.06 (3H, s), 1.05 (3H, s), 1.05 (3H, d, J = 7.2 Hz); 13C NMR (100 MHz, CDCl3) d
197.2 (C), 196.8 (C), 149.1 (CH), 136.3 (C), 81.2 (C), 79.8 (CH), 71.4 (C), 50.0
(CH2), 37.9 (CH), 27.4 (CH2), 26.0 (CH3), 25.3 (CH2), 24.1 (CH3), 16.6 (CH3), 15.6
(CH3); HRMS (ESI) calcd for C15H22O4Na 289.1416 (M++Na), found 289.1422.
11. The X-ray crystal data of 4 and 21 were obtained using a Rigaku RAXIS-PAPID
1
2
3
4
DIBAH, THF, ꢀ78 °Cꢂrt
Recovered of 4 (79%)
Red-AlÒ, THF, 0 °C
43
74
73
1:0
10:1
13:1
LiAl(OtBu)3H, THF, 0 °C15
Zn(BH4)2, Et2O, 0 °C
Determined by 1H NMR.
a
diffractometer, MoK radiation (k = 0.71075 Å), graphite monochromator. 4:
a
C
15H22O4, monoclinic, space group P212121, unit cell dimensions
a = 5.5917(3) Å, b = 9.5202(4) Å, c = 27.279(1) Å,
V = 11452.2(1) Å3,
Dcalcd = 1.218 g/cm3, Z = 4, F(000) = 576, = 0.0087 mmꢀ1
Data were
l
.
collected at 123 K. A total of 12831 reflections was collected, 6090 were
unique (Rint = 0.016). The structure was refined by full-matrix least-squares on
F. The final refinement [I >2r(I)] gave R1 = 0.035, wR2 = 0.064. 21: C15H22O4,
orthorhombic, space group P212121, unit cell dimensions a = 8.7360(5) Å,
b = 10.3233(6) Å, c = 15.7689(9) Å, V = 1422.1(1) Å3, Dcalcd = 1.244 g/cm3, Z = 4,
F(000) = 576,
reflections was collected, 3266 were unique (Rint = 0.018). The structure was
refined by full-matrix least-squares on F. The final refinement [I >2 (I)] gave
l
= 0.0089 mmꢀ1. Data were collected at 123 K. A total of 13578
Figure 4. Proposed mechanism with Zn(BH4)2 reduction.
r
R1 = 0.033, wR2 = 0.047. Crystallographic data (excluding structure factors) for
4 and 21 have been deposited with the Cambridge Crystallographic Data
Centre as supplementary publication number CCDC 851889 and CCDC 851673,
respectively. Copies of these information may be obtained free of charge from
the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2
1EZ, UK (fax: +44 1223 336 033; e-mail: deposit@ccdc.cam.ac.uk or http://
different routes, and a highly regio- and diastereoselective reduc-
tion of the carbonyl at C2. The synthetic route developed here is
general and efficient and could also be applied to the synthesis of
other related natural products.
Acknowledgments
12. Hu, Y.; Li, C.; Kulkarni, B. A.; Strobel, G.; Lobkovsky, E.; Torczynski, R. M.; Porco,
J. A., Jr. Org. Lett. 2001, 3, 1649–1652.
13. Liu, C.; Burnell, J. J. Org. Chem. 1997, 62, 3683–3687.
This work was supported financially by a Grant-in-Aid for the
Program for Promotion of Basic and Applied Research for Innova-
tions in the Bio-oriented Industry (BRAIN).
14. The isomer 22 was obtained as a single product and the stereochemistry at C5
remains to be established. ½a D27
ꢁ
+35.8° (c 0.05 CHCl3); IR (KBr) 3387, 2926,
1691, 1686, 1436, 1377, 1207, 1089 cmꢀ1
;
1H NMR (400 MHz, CDCl3) d 5.87