anions [(SPh2P)2CE¢E¢C(PPh2S)2]2- (E¢ = S, Se) yields polycyclic,
binuclear Tl(I)/Tl(I) complexes in which the dimeric ligands
remain intact with little change in the central chalcogen–
chalcogen bond length for E = Se. Reaction of InCl3 with
[HC(PPh2Se)2]- generates the heteroleptic, mononuclear In(III)
complex (TMEDA)InCl[(Se)C(PPh2Se)2] via selenium–proton ex-
change with no detectable intermediate. An alternative route to
similar In(III) complexes is the metathesis of InCl3 with the triden-
tate dianions [(E¢)C(PPh2S)2]2- (E¢ = S, Se). These monofunctional
complexes (In–Cl linkage) offer scope for further investigations of
reaction chemistry at indium(III) centres harnessed by tridentate
chalcogen-centred ligands.
9 J. Konu, T. Chivers and H. M. Tuononen, Chem.–Eur. J., 2010, 16,
12977.
10 M. Risto, J. Konu and T. Chivers, Inorg. Chem., 2011, 50, 406.
11 J. Konu, T. Chivers and H. M. Tuononen, Chem. Eur. J., 2011, 17,
accepted for publication.
12 A search of the CCDC database revealed no structurally characterized
2
complexes with the h -E2 bonding mode for REER ligands when E =
Se, and only Nb and Ti complexes can be found for E = S: (a) P. J.
McKarns, M. J. Heeg and C. H. Winter, Inorg. Chem., 1998, 37, 4743;
(b) J. Okuda, S. Fokken, T. Kleinhenn and T. P. Spaniol, Eur. J. Inorg.
Chem., 2000, 1321.
13 Note that the dianionic ligands 3b and 3c are formally dimers of the
∑
corresponding monoanion radicals [(E¢)C(PPh2S)2]- (E¢ = S, Se).
14 J. S. Ritch and T. Chivers, Dalton Trans., 2010, 39, 1745.
15 G. M. Sheldrick, SHELXS-97, Program for solution of crystal struc-
tures, University of Go¨ttingen, Germany, 1997.
16 G. M. Sheldrick, SHELXL-97, Program for refinement of crystal
structures, University of Go¨ttingen, Germany, 1997.
17 An approximate solution of the X-ray data of twinned crystals revealed
the individual components of the adduct Tl[HC(PPh2Se)2]·LiOEt (7),
but the structure could not be refined satisfactorily. All subsequent
attempts to grow single crystals of 7 failed.
Acknowledgements
Financial support from the Natural Sciences and Engineering
Research Council (Canada) is gratefully acknowledged.
18 S. O. Grim and E. D. Walton, Inorg. Chem., 1980, 19, 1982.
19 S. S. Dhingra and M. G. Kanatzidis, Inorg. Chem., 1993, 32, 1350.
20 J. Campbell, H. P. A. Mercier, D. P. Santry, R. J. Suontamo, H.
Borrmann and G. J. Schrobilgen, Inorg. Chem., 2001, 40, 233.
21 A. M. Pirani, H. P. A. Mercier, R. J. Suontamo, G. J. Schrobilgen, D.
P. Santry and H. Borrmann, Inorg. Chem., 2005, 44, 8770.
22 N. J. Hill, W. Levason, M. E. Light and G. Reid, Chem. Commun., 2003,
110.
References
1 J. Konu, H. M. Tuononen and T. Chivers, Inorg. Chem., 2009, 48, 11788.
2 (a) P. Bhattacharyya, J. Novosad, J. Phillips, A. M. Z. Slawin, D. J.
Williams and J. D. Woollins, J. Chem. Soc., Dalton Trans., 1995, 1607;
(b) D. Cupertino, D. J. Birdsall, A. M. Z. Slawin and J. D. Woollins,
Inorg. Chim. Acta, 1999, 290, 1.
23 H.-U. Hummel, E. Fischer, T. Fischer, D. Gruss, A. Franke and W.
Dietzsch, Chem. Ber., 1992, 125, 1565.
3 For reviews, see (a) T. Q. Ly and J. D. Woollins, Coord. Chem. Rev.,
1998, 176, 451; (b) C. Silvestru and J. E. Drake, Coord. Chem. Rev.,
2001, 223, 117; (c) I. Haiduc, in Comprehensive Coordination Chemistry
II, ed. A. B. P. Lever, Elsevier Pergamon, Amsterdam, Oxford, 2004,
Vol. 1, pp. 323.
24 I. D. Brown, Chem. Soc. Rev., 1978, 7, 359.
25 I. D. Brown in Structure and Bonding in Crystals, Academic Press, New
York, 1981,Vol. II, pp. 1–30.
26 S. S. Dhingra, F. Liu and M. G. Kanatzidis, Inorg. Chim. Acta, 1993,
210, 237.
27 (a) L. Pauling, The Nature of the Chemical Bond, Cornell University
Press, Ithaca, N.Y., 3rd edn; 1960; (b) B. Cordero, V. Gomez, A. E.
Platero-Prats, M. Reves, J. Echeverria, E. Cremades, F. Barragan and
S. Alvarez, Dalton Trans., 2008, 2832.
28 A. Bondi, J. Phys. Chem., 1964, 68, 441.
29 A. J. Blake, G. Reid and M. Schro¨der, J. Chem. Soc., Dalton Trans.,
1992, 2987.
4 V. Garcia-Montalvo, J. Novosad, P. Kilian, J. D. Woollins, A. M. Z.
Slawin, P. Garcia y Garcia, M. Lopez-Cardoso, G. Espinosa-Perez and
R. Cea-Olivares, J. Chem. Soc., Dalton Trans., 1997, 1025.
5 The involvement of N-coordination is observed in rare cases, e.g. for
lanthanides: (a) C. G. Pernin and J. A. Ibers, Inorg. Chem., 2000, 39,
1222; (b) C. G. Pernin and J. A. Ibers, Inorg. Chem., 2000, 39, 1216;
(c) C. G. Pernin and J. A. Ibers, Inorg. Chem., 1999, 38, 5478; and also
for Pd; (d) M. Necas, M. R. St. J. Foreman, J. Marek, J. D. Woollins
and J. Novosad, New J. Chem., 2001, 25, 1256.
6 J. Konu and T. Chivers, Chem. Commun., 2010, 46, 1431.
7 In a related observation Grim and co-workers reported that the
deprotonation of [HC(PPh2S)3] to give the monoanion [C(PPh2S)3]-
occurs by direct reaction with HgX2 (X = Cl, Br) in ethanol, although
it cannot be achieved by treatment of [HC(PPh2S)3] with a variety of
bases; these authors suggested that coordination of one or more of the
PS groups to Hg increases the acidity of the methine proton. S. O. Grim,
P. H. Smith, S. Nittolo, H. L. Ammon, L. C. Satek, S. A. Sangokoya,
R. K. Khanna, I. J. Colquhoun, W. McFarlane and J. R. Holden, Inorg.
Chem., 1985, 24, 2889.
30 A. J. Blake, D. Fenske, W.-S. Li, V. Lippolis and M. Schro¨der, J. Chem.
Soc., Dalton Trans., 1998, 3961.
31 No improvement in the resolution of the spectrum was achieved upon
lowering the temperature to -80 ◦C.
32 The reaction of [Li(TMEDA)]1 with InCl3 occurs via Se–H+ ex-
change as indicated by the 31P NMR detection of the monoselenide,
[H2C(PPh2)(PPh2Se)].
33 J. Konu and T. Chivers, unpublished results.
34 W.-P. Leung, C.-L. Wan and T. C. W. Mak, Organometallics, 2010, 29,
1622.
35 W.-P. Leung, C.-L. Wan, K.-W. Kan and T. C. W. Mak, Organometallics,
2010, 29, 814.
8 T. Cantat, N. Me´zailles, L. Ricard, Y. Jean and P. A. Le Floch, Angew.
Chem., Int. Ed., 2004, 43, 6382.
8246 | Dalton Trans., 2011, 40, 8238–8246
This journal is
The Royal Society of Chemistry 2011
©