Communication
117, 2858; f) A. S. K. Hashmi, P. Haufe, C. Schmid, A. R. Nass, W. Frey,
When there is no base in the reaction system, the cyclization
of INT-CC-Break over TS-4-Cyc (11.8 kcalmolꢀ1) yields a thermo-
dynamically unstable product INT-4-Cyc (ꢀ5.1 kcalmolꢀ1). A
more favorable pathway is the reverse reaction, regenerating
the reactant complex R, then along path b forming the cy-
clized intermediate INT-exo-e (0.6 kcalmolꢀ1) over transition-
state TS-C2-exo-e (11.2 kcalmolꢀ1). Subsequently, the CꢀC
bond break by TS-CC-Break’ (6.3 kcalmolꢀ1) leads to intermedi-
ate INT-CC-Break’ (ꢀ4.6 kcalmolꢀ1), the cyclization of which
leads to product 3a-P (ꢀ26.9 kcalmolꢀ1). This process is similar
to that reported for Petasis–Ferrier rearrangement.[19]
´
Hashmi, M. Rudolph, J. W. Bats, W. Frey, F. Rominger, T. Oeser, Chem. Eur.
kajakshan, M. Rudolph, E. Enns, T. Bander, F. Rominger, W. Frey, Adv.
´
[5] For regioselective and controllable cyclization of pyrrole- or indole-ynes
under different catalysts, see: a) S. G. Modha, A. Kumar, D. D. Vachhani,
48, 10916; b) A. Kumar, Z. Li, S. K. Sharma, V. S. Parmar, E. V. Van der
S. G. Modha, S. K. Sharma, V. S. Parmar, E. V. van der Eycken, Synthesis
2013, 45, 2571.
In DFT studies on the gold-catalyzed a-functionalization of
furans by b-tethered alkynes,[4b] the selectivity of 7-endo and
6-exo attacks determined by the electrophilicity of carbon
atoms of the CꢁC triple bond. However, as shown in
Scheme 2, TS-C2-exo-e is less favorable though C2 in R is more
electrophilic.[20] The bond angles A1 and A2 in R are 122.5 and
123.28, respectively. In TS-C2-exo-e these two angles are de-
creased by 5.8 and 7.28, respectively. However, in TS-C2-
endo-e these two angles are only decreased by 1.0 and 1.18,
respectively. Therefore, we propose that in this case the larger
strain energy required to form the benzo five-membered ring
may be important for the regioselectivity.
In conclusion, we have disclosed gold-catalyzed endo- or
exo-selective cyclizations on the same substrates of furan-ynes.
The reaction provides a concise access to stereodefined trisub-
stituted alkenes by endo cyclization with concomitant 1,5-mi-
gration of the furanyl group in the presence of unactivated 3ꢀ
molecular sieves. While in the absence of molecular sieves,
indene products were generated by exo cyclization followed
by 1,4-furanyl migration and cyclization. The scope for 1,5-mi-
grations can be extended to other heterocycles, such as ben-
zofurans, thiophenes, and pyrroles. Further extensions of this
chemistry are in progress.
[6] For gold-catalyzed cyclizations of furan-ynes accompanied by furanyl
migration, see: a) A. S. K. Hashmi, T. Hꢂffner, W. Yang, S. Pankajakshan, S.
for indene formation accompanied by furanyl migration, see: b) A. S. K.
Hashmi, J. Hofmann, S. Shi, A. Schꢃtz, M. Rudolph, C. Lothschꢃtz, M.
and the references therein. For recent papers, see: b) A. Studer, M. Bos-
d) T. Khan, P. J. Skabara, S. J. Coles, M. B. Hursthouse, Chem. Commun.
2001, 369; e) A. Nakazaki, J. Usuki, K. Tomooka, Synlett 2008, 2064; f) L.
Acknowledgements
We thank the National Natural Science Foundation of China
(Grant Nos. 21125210, 21372244, 21172248, 21121062), Chinese
Academy of Science, and the Major State Basic Research Devel-
opment Program (Grant No. 2011CB808700) for financial
support.
[10] We found that if the reaction was carried out under the conditions con-
taminated with water, the yield of 2a could be increased.
[11] CCDC-915008 (2a), -1023011 (3d), -915006 (5), -915009 (9), and -915007
(17) contain the supplementary crystallographic data for this paper.
These data can be obtained free of charge from The Cambridge Crystal-
Keywords: alkenes · furans · gold catalysis · migration ·
stereoselectivity
[13] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R.
Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Na-
katsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G.
Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Ha-
segawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven,
A., Jr., Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E.
Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Ra-
ghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N.
Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo,
J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R.
Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakr-
zewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Dan-
iels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian
09, Revision A.02, Gaussian, Inc., Wallingford, CT, 2009.
Comprehensive Heterocyclic Chemistry II, Vol. 2 (Eds.: A. R. Katritzky, C. W.
Rees, E. F. V. Scriven), Pergamon Press, Oxford, 1996, pp. 297–350;
c) J. A. Joule, K. Mills, Heterocyclic Chemistry, 5th ed., Wiley-Blackwell,
Hoboken, 2010, pp. 347–368.
c) A. S. K. Hashmi, L. Ding, J. W. Bats, P. Fischer, W. Frey, Chem. Eur. J.
2003, 9, 4339; d) A. S. K. Hashmi, J. P. Weyrauch, M. Rudolph, E. Kurpe-
´
6707; e) A. S. K. Hashmi, M. Rudolph, J. P. Weyrauch, M. Wçlfle, W. Frey,
Chem. Eur. J. 2014, 20, 1 – 7
5
ꢁ 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
&
&
These are not the final page numbers! ÞÞ