H. Zhai et al. / Bioorg. Med. Chem. Lett. 22 (2012) 1557–1559
1559
MeO
BnO
MeO
BnO
Acknowledgments
.
HCl
N
37% HCO2H aq.
AcOH, 90°
.
NH
HCl
This work was supported by the University of British Columbia,
the Natural Sciences and Engineering Research Council of Canada,
and Panora Pharmaceuticals.
H
then HCl
MeOH, –20 °C
81% yield
OBn
OBn
.
.
2 HCl
7 HCl
OMe
OMe
Supplementary data
Scheme 3. Mannich-type cyclization of tetrahydroisoquinoline 2.
Supplementary data (all of the full procedures and chemical
compound information) associated with this article can be found,
H2
MeO
BnO
MeO
HO
Pd/C
MeOH
References and notes
HCl
HCl
N
N
H
1. For a review, see: Freedman, R. N. Engl. J. Med. 2003, 349, 1738.
2. (a) Carlsson, A.; Carlsson, M. L. Dialogues Clin. Neurosci. 2006, 8, 137; (b) van Os,
J.; Kapur, S. Lancet 2009, 374, 635.
3. (a) Weinberger, D. R.; Egan, M. F.; Bertolino, A.; Callicott, J. H.; Mattay, V. S.;
Lipska, B. K.; Berman, K. F.; Goldberg, T. E. Biol. Psychiatry 2001, 50, 825;
(b) Goldman-Rakic, P. S.; Castner, S. A.; Svensson, T. H.; Siever, L. J.; Williams, G.
V. Psychopharmacology 2004, 174, 3.
H
or
HCl
MeOH
64 °C
OBn
OH
1 HCl
7 HCl
OMe
OMe
Scheme 4. Completion of the synthesis of (À)-govadine (1).
4. Hsu, B.; Kin, K. C. Arch. Int. Pharmacodyn. 1962, 89, 318.
5. Mo, J.; Guo, Y.; Yang, Y.-S.; Shen, J.-S.; Jin, G.-Z.; Zhen, X. Curr. Med. Chem. 2007,
14, 2996.
6. For in vitro and in vivo studies on THPBs, see: (a) Jin, G. –Z.; Huang, K.; Sun, B. –
C. Neurochem. Int 1992, 20, 175S; (b) Jin, G. –Z.; Sun, B. –C. Adv. Exp. Med. Biol.
1995, 363, 27; (c) Jin, G. –Z.; Zhu, Z. –T.; Fu, T. Trends Pharmacol. Sci. 2002, 23, 4.
7. (a) Mehra, K.; Garg, H. S.; Bhakuni, D. S.; Khanna, N. M. Indian J. Chem., Sect B
1976, 14B, 216; (b) Mehra, K.; Garg, H. S.; Bhakuni, D. S.; Khanna, N. M. Indian J.
Chem., Sect B 1976, 14B, 844.
8. Lapish, C. C.; Belardetti, F.; Ashby, D. M.; Ahn, S.; Butts, K. A.; So, K.; Macrae, C.
M.; Hynd, J. J.; Miller, J. J.; Phillips, A. G. Int. J. Neuropsychop. in press. Doi:
9. Both (À)-govadine and (+)-govadine are not commercially available.
10. For syntheses of ( )-govadine, see: (a) Kametani, T.; Satoh, M. J. Pharm. Soc. Jpn
1967, 179; (b) Chiang, H.-C.; Brochmann-Hanssen, E. R. J. Org. Chem 1977, 42,
3190; (c) Chiang, H.-C.; Cheng, Y.-C.; Liu, J.-C. Taiwan Yaoxue Zazhi 1978, 54, 30;
(d) Kametani, T.; Ihara, M. J. Chem. Soc., Perkin Trans. 1 1980, 629; (e) Yongzhou,
H. Chinese J. Med. Chem 1998, 8, 190; (f) Ref. 7a These routes access the desired
tetrahydroisoquinoline core utilizing racemic reductions of the corresponding
dihydroisoquinoline.
govadine regioisomer 7 (Scheme 3). To complete the synthesis, the
benzyl group was removed through hydrogenation, and the prod-
uct was crystallized as the HCl salt to afforded the desired govadine
salt in 92% yield (Scheme 4). While it has been noted that racemiza-
tion has been observed during benzyl hydrogenolysis of other THPB
analogs, no loss of enantioselectivity in the final product was
observed when the reaction was performed on small scale. However,
racemization was observed during scale-up (79% ee) due to in-
creased reaction times.19 To avoid racemization, the benzyl groups
can be deprotected using HCl to afford govadine hydrochloride in
73% yield. Using the opposite enantiomer of the Noyori catalyst,
the same route was utilized for the synthesis of (+)-govadine.
Preliminary in vitro testing of both enantiomers of govadine ob-
tained from this synthetic route provided different antagonist prop-
erties towards the dopamine D1 and D2 receptors.8 (À)-Govadine
11. Bischler, A.; Napieralski, B. Ber. 1893, 26, 1903.
12. For a representative example of a comparable peptide coupling, see: Khorna,
N.; Markmee, S.; Ingkaninan, K.; Ruchirwat, S.; Kitbunnada, R. J.; Pullagurla, M.
R. Med. Chem. Res. 2009, 18, 231.
13. For a representative example of a comparable peptide coupling, see: Yang, Y. –
S.; Ding, Y.; Sun, P. –H.; Mo, J.; Jin, G. –Z.; Ji, R. –Y. Faming Zhuanli Shenqing
Gongkai Shuomingshu 2007. CN 1900075 A.
was found to be a nanomolar dopamine D1 antagonist (EC50
=
5.6 Â 10À9) and moderate D2 antagonist properties (EC50 = 5.6 Â
10À5). In contrast, (+)-govadine displayed weak antagonist proper-
ties at both D1 (EC50 >1.0 Â 10À4) and D2 (EC50 = 1.4 Â 10À5).
Current in vivo studies on each enantiomer of govadine are currently
underway.
Overall, we have developed an efficient 5-step synthesis of the
potential antipsychotic (+)-govadine and (À)-govadine in 39% over-
all yield from commercially available materials. This marks the first
enantioselective synthesis of govadine and the one of the most effi-
cient enantioselective synthesis of any THPB. Furthermore, every
intermediate was purified by crystallization and no flash column
chromatography was necessary. Testing of both (+)- and (À)-gova-
dine as pharmaceutical agents in the treatment of schizophrenia
and other neuropathic diseases is currently underway.
14. For
a representative example of a thermal peptide coupling between
homovanillic acid and dopamine derivatives, see: Iwasa, K.; Cui, W.;
Takahashi, T.; Nishiyama, Y.; Kamigauchi, M.; Koyama, J.; Takeuchi, A.;
Moriyasu, M.; Takeda, K. J. Nat. Prod. 2010, 73, 115.
15. Uematsu, N.; Fujii, A.; Hashiguchi, S.; Ikariya, T.; Noyori, R. J. Chem. Soc. 1996,
118, 4916.
16. (a) Bedejs, E.; Trapencieris, P.; Suna, E. J. Org. Chem. 1999, 64, 6724; (b) Tietze, L.
F.; Rackelmann, N.; Sekar, G. Angew. Chem., Int. Ed. 2003, 42, 4254;
(c) Mujahidin, D.; Doye, S. Eur. J. Org. Chem 2005, 2689; (d) Werner, F.;
Blank, N.; Opatz, T. Eur. J. Org. Chem 2007, 3911.
17. Cheng, J. –J.; Yang, Y. –S. J. Org. Chem. 2009, 74, 9225.
18. For a description of the instability of a related isoquinoline, see: Pyo, M. K.; Lee,
D. H.; Kim, D. H.; Lee, J. H.; Moon, J. C.; Chang, K. C.; Choi, H. S. Y. Bioorg. Med.
Chem. Lett. 2008, 18, 4110.
19. For examples, see: (a) Parvulescu, A. N.; De Vos, D. E.; Jacobs, P. A. Chem.
Commun 2005, 42, 5307; (b) Parvulescu, A. N.; Jacobs, P. A.; De Vos, D. E. Chem.
Eur. J 2007, 13, 2034; (c) Parvulescu, A. N.; Van der Eycken, E.; Jacobs, P. A.; De
Vos, D. E. J. Catal. 2008, 255, 206; (d) Ref. 17.