acid precursors rapidly that has been achieved using
Pd(II)/sulfoxide-catalysis.
Scheme 1. CÀH Amination Route to Homophenylalaninesa
Within recent years, our laboratory has introduced elec-
trophilic Pd(II)/sulfoxide catalysis as a general platform
for allylic CÀH activation that enables direct and selective
allylic esterification,2aÀh amination,3bÀg alkylation4 and
dehydrogenation5 of R-olefins. Additionally, we have de-
monstrated that sulfoxide ligands promote highly selective
Pd(II)-mediated vinylic CÀH arylations (Heck-type
coupling) under analogous oxidative conditions.2d,6,7 Ex-
ploiting these parallel conditions, we invented a sequential,
one-pot Pd(II)-sulfoxide-catalyzed allylic esterification/
vinylic arylation of R-olefins (Scheme 1).2d We postulated
that analogous sequential reactions would be possible with
allylic CÀH amination reactions, thus facilitating a rapid
and diversifiable route to densely functionalized carbon
skeletons such as those found in R- and β-amino acids from
simple R-olefin starting materials. Herein, we report a one-
pot Pd(II)/sulfoxide-catalyzed allylic CÀH amination/
vinylic CÀH arylation that starts with commodity chemi-
cal 3-butenol to access a wide range of homophenylalanine
(hPhe) derivatives rapidly. Additionally, by switching to
4-pentenol, analogous β-amino acid precursors may be
obtained.
a PhBQ = phenyl-benzoquinone; BisSO ligand = 1,2 bis(phenyl-
sulfinyl)ethane (refs 3b and 3e).
enzyme inhibitors (“ACE inhibitors”) benezepril,8 enala-
pril,9 imidapril,10 lisinopril11 and temocapril.12 Although a
variety of chemical methods exist for the synthesis of hPhe
derivatives that include Suzuki coupling,13 diastereoselec-
tive Michael addition14 and asymmetric hydrogenation re-
actions,15 these known routes generally rely upon lengthy
reaction sequences from chiral pool materials and often
suffer limited scope. We herein report the use of readily
available, commercial R-olefins and arylboronic acids as
suitable starting materials for the rapid synthesis of a wide
range of unnatural homophenylalanine (hPhe) amino acids.
While itwas known that palladium bis-sulfoxidecatalyst
1 could separately catalyze both the desired allylic CÀH
amination and vinylic CÀH arylation reactions, it was un-
clear if: (1) such a sequence would proceed with high yields
without requiring additional Pd(II)/sulfoxide catalyst 1
loadings, and (2) allylic oxazolidinones would serve as
nonresonance directing groups to promote high regio- and
E:Z stereoselectivities for vinylic arylation. Palladium(II)-
Pd(0) catalytic cycles generally suffer from rapid catalyst
decomposition through Pd(0)-aggregation pathways be-
cause soft donor ligands (e.g., phosphines) that are typi-
cally used to prevent aggregation are incompatible with
oxidative conditions.16 It was therefore critical to minimize
reaction times for the first step of the proposed tandem
Unnatural homophenylalanine (hPhe) amino acids are
important building blocks for pharmaceutical research as
exemplified by the commercial angiotensin-converting
(3) Pd-catalyzed allylic C;H aminations: (a) Larock, R. C.; High-
tower, T. R.; Hasvold, L. A.; Peterson, K. P. J. Org. Chem. 1996, 61,
3584. (b) Fraunhoffer, K. J.; White, M. C. J. Am. Chem. Soc. 2007, 129,
7274. (c) Reed, S. A.; White, M. C. J. Am. Chem. Soc. 2008, 130, 3316. (d)
Liu, G.; Yin, G.; Wu, L. Angew. Chem., Int. Ed. 2008, 47, 4733. (e) Rice,
G. T.; White, M. C. J. Am. Chem. Soc. 2009, 131, 11707. (f) Reed, S. A.;
Mazzotti, A. R.; White, M. C. J. Am. Chem. Soc. 2009, 131, 11701. (g)
Qi, X.; Rice, G. T.; Lall, M. S.; Plummer, M. S.; White, M. C.
Tetrahedron 2010, 66, 4816. (h) Nahra, F.; Liron, F.; Prestat, G.; Mealli,
C.; Messaoudi, A.; Poli, G. Chem.;Eur. J. 2009, 15, 11078. (i) Shimizu,
Y.; Obora, Y.; Ishii, Y. Org. Lett. 2010, 12, 1372.
(4) Pd-catalyzed allylic C;H alkylation: (a) Young, A. J.; White,
M. C. J. Am. Chem. Soc. 2008, 130, 14090. (b) Young, A. J.; White, M. C.
Angew. Chem., Int. Ed. 2011, 50, 6824. (c) Lin, S.; Song, C.-X.; Cai,
G.-X.; Wang, W.-H.; Shi, Z.-J. J. Am. Chem. Soc. 2008, 130, 12901.
(5) Stang, E. M.; White, M. C. J. Am. Chem. Soc. 2011, 133, 14892.
(6) Delcamp, J. H.; Brucks, A. P.; White, M. C. J. Am. Chem. Soc.
2008, 130, 11270.
(7) Oxidative Heck reactions: (a) Cho, C. S.; Uemura, S. J. Organo-
met. Chem. 1994, 465, 85. (b) Du, X.; Suguro, M.; Hirabayashi, K.;
Mori, A.; Nishikata, T.; Hagiwara, N.; Kawata, K.; Okeda, T.; Wang,
H.; Fugami, K.; Kosugi, M. Org. Lett. 2001, 3, 3313. (c) Yoo, K. S.;
Yoon, C. H.; Jung, K. W. J. Am. Chem. Soc. 2006, 128, 16384. (d) Lindh,
J.; Enquist, P.; Pilotti, A.; Nilsson, P.; Larhed, M. J. Org. Chem. 2007,
72, 7957. (e) Du, X.; Suguro, M.; Hirabayashi, K.; Mori, A. Org. Lett.
2001, 3, 3313. (f) Werner, E. W.; Sigman, M. S. J. Am. Chem. Soc. 2010,
132, 13981.
(8) Hou, F. F.; Zhang, X.; Zhang, G. H.; Xie, D.; Chen, P. Y.; Zhang,
W. R.; Jiang, J. P.; Liang, M.; Wang, G. B.; Liu, Z. R.; Geng, R. W. New
Engl. J. Med. 2006, 354, 131.
(12) (a) Nakamura, T.; Inoue, T.; Sugaya, T.; Kawagoe, Y.; Suzuki,
T.; Ueda, Y.; Koide, H.; Node, K. Am. J. Hypertens. 2007, 20, 1195. (b)
Katayama, S.; Kawamori, R.; Iwamoto, Y.; Saito, I.; Kuramoto, K.
Hypertens. Res. 2008, 31, 1499.
(13) (a) Barfoot, C. W.; Harvey, J. E.; Kenworthy, M. N.; Kilburn,
J. P.; Ahmed, M.; Taylor, R. J. K. Tetrahedron 2005, 61, 3403. (b) Lebel,
H.; Ladjel, C.; Brethous, L. J. Am. Chem. Soc. 2007, 129, 13321. (c)
Collier, P. N.; Campbell, A. D.; Patel, I.; Raynham, T. M.; Taylor,
R. J. K. J. Org. Chem. 2002, 67, 1802.
(14) Yamada, M.; Nagashima, N.; Hasegawa, J.; Takahashi, S.
Tetrahedron Lett. 1998, 39, 9019.
(15) Xie, Y.; Lou, R.; Li, Z.; Mi, A.; Jiang, Y. Tetrahedron: Asym-
metry 2000, 11, 1487.
(9) McMurray, J. J. New Engl. J. Med. 2010, 362, 228.
(10) (a) Geshi, E.; Kimura, T.; Yoshimura, M.; Suzuki, H.; Koba, S.;
Sakai, T.; Saito, T.; Koga, A.; Muramatsu, M.; Katagiri, T. Hypertens.
Res. 2005, 28, 719. (b) Tomita, N.; Yamasaki, K.; Izawa, K.; Kunugiza,
Y.; Osako, M. K.; Ogihara, T.; Morishita, R. Int. J. Mol. Med. 2007, 19,
571.
(11) Patchett, A. A.; Harris, E.; Tristram, E. W.; Wyvratt, M. J.; Wu,
M. T.; Taub, D.; Peterson, E. R.; Ikeler, T. J.; ten Broeke, J.; Payne,
L. G.; Ondeyka, D. L.; Thorsett, E. D.; Greenlee, W. J.; Lohr, N. S.;
Hoffsommer, R. D.; Joshua, H.; Ruyle, W. V.; Rothrock, J. W.; Aster,
S. D.; Maycock, A. L.; Robinson, F. M.; Hirschmann, R.; Sweet, C. S.;
Ulm, E. H.; Gross, D. M.; Vassil, T. C.; Stone, C. A. Nature 1980, 288,
280.
(16) Steinhoff, B. A.;King, A.E.;Stahl, S. S.J. Org. Chem. 2006,71, 1861.
Org. Lett., Vol. 14, No. 6, 2012
1387