JOURNAL OF
POLYMER SCIENCE
ARTICLE
WWW.POLYMERCHEMISTRY.ORG
(CDCl3, 100 MHz): d 36.1 (C(¼¼O)ACH2ACH, CH2ACH(AC)
ACH2), 45.7 (CACH2Cl), 111.6 (OACAO), 171.8 (CH2A
C(¼¼O)AO). Anal. Calcd for C7H7O4Cl: C, 44.12; H, 3.70.
Found: C, 43.80; H, 4.00.
Spectroscopic Data of 4a
IR (neat): 3033 (CAH), 1728 [C¼¼O (ester)], 1712 [C¼¼O (ke-
tone)] cmꢂ1 1H NMR (CDCl3, 400 MHz): d 2.25 (s, 3H,
.
CH3AC(¼¼O)ACH), 2.52 (m, 2H, CHACH2ACOO), 2.76 (m, 2H,
CHACH2AC(¼¼O)AO), 3.38 (br, 1H, CH2ACH(AC)ACH2), 5.09
(br, 4H, C(¼¼O)AOACH2A Ar), 7.32 (m, 4H, Ar). 13C NMR
(CDCl3, 100 MHz): d 39.3 (CH3AC(¼¼O)CH), 35.3 (CHA
CH2AC(¼¼O)O), 44.0 (CH2ACH(AC)ACH2), 66.4 (COOACH2A
Ar), 128.6 (Ar), 135.8 (Ar), 171.3 (CH2AC(¼¼O)AOACH2),
208.9 (CH3AC(¼¼O)ACH).
Reaction of 1a and BnOH
The reaction is depicted in Scheme 3. Compound 1a (600 mg,
3.84 mmol), BnOH (0.2 mL, 7.68 mmol), p-TsOH (33 mg, 0.19
mmol), and 4.8 mL of CH2Cl2 was stirred at rt. After 24 h, the
solvent was removed under reduced pressure. The resulting
residue was fractionated by silica gel chromatography (eluent :
chloroform/ethyl acetate ¼ 5/1) to afford the corresponding 1 :
1 adduct 2a (501 mg, 1.29 mmol; 37%) and the corresponding
1 : 2 adduct 3a (777 mg, 1.98 mmol; 57%) as colorless viscous
oils.
Compounds 4b and 4c were synthesized according to the
same procedure for 4a using 1b and 1c as a starting mate-
rial, respectively.
Spectroscopic Data of 4b
IR (neat): 2956 (CAH), 1728 [C¼¼O (ester)], 1674 [C¼¼O (ke-
Spectroscopic Data of 2a
tone)] cmꢂ1 1H NMR (CDCl3, 400 MHz): d 1.85 (s, 3H,
.
IR (neat): 3600–2300 (OAH), 3033 (CAH), 1730 [C¼¼O
(ester)], 1708 [C¼¼O (ketone)] cmꢂ1
.
1H NMR (CDCl3, 400
CH3AC(AC)¼¼CH2), 2.48 (m, 2H, CHACH2ACOO), 2.77 (m,
2H, CHACH2ACOO), 4.06 (br, 1H, CH2ACH(AC)ACH2), 5.06
(br, 4H, C(¼¼O)AOACH2AAr), 5.82 (s, 1H, C¼¼CH2), 6.06 (s,
1H, C¼¼CH2), 7.30 (m, 4H, Ar). 13C NMR (CDCl3, 100 MHz): d
18.0 (CH3AC(AC)¼¼CH2), 36.2 (CHACH2AC(¼¼O)O), 37.8
(CH2ACH(AC)ACH2), 66.4 (COOACH2AAr), 125.7 (CH3A
C¼¼CH2), 128.6 (Ar), 135.8 (Ar), 143.2 (CH3AC¼¼CH2), 171.3
(CH2AC(¼¼O)AOACH2), 202.3(H2C¼¼CAC(¼¼O)ACH).
MHz): d 2.24 (s, 3H, CH3), 2.50 (m, 2H, CH2COO), 2.76 (m,
2H, CH2COO), 3.33 (br, 1H, CH), 5.12 (s, 2H, CH2OCO), 7.37
(m, 5H, Ph), 9.99 (br, 1H, COOH). 13C NMR (CDCl3, 100
MHz): d 29.2 (CH3AC), 34.9 (CHACH2AC(¼¼O)OH), 35.2
(CHACH2AC(¼¼O)O),
43.7
(CH2ACH(AC)ACH2),
66.9
(COOACH2APh), 128.4 (Ph), 128.5 (Ph), 128.7 (Ph), 135.4
(Ph), 171.3 (CH2AC(¼¼O)AOACH2), 177.3 (CH2AC(¼¼O)AOH),
208.9 (CH3AC(¼¼O)ACH). Anal. Calcd for C14H16O5: C, 63.63;
H, 6.10. Found: C, 63.34; H, 6.11.
Spectroscopic Data of 4c
IR (neat): 2943 (CAH), 1723 [C¼¼O (ester and ketone)]
cmꢂ1
. d 2.53 (m, 2H,
1H NMR (CDCl3, 400 MHz):
Spectroscopic Data of 3a
CHACH2ACOO), 2.79 (m, 2H, CHACH2ACOO), 3.53 (br, 1H,
CH2ACH(AC)ACH2), 4.44 (s, 2H, C(¼¼O)ACH2Cl), 5.08 (br,
4H, C(¼¼O)AOACH2AAr), 7.31 (m, 4H, Ar). 13C NMR (CDCl3,
100 MHz): d 36.3 (ClCH2AC), 40.3 (CHACH2AC(¼¼O)O), 49.3
(CH2ACH(AC)ACH2), 66.6 (COOACH2AAr), 128.6 (Ar),
135.7 (Ar), 171.0 (CH2AC(¼¼O)AOACH2), 204.0 (ClCH2A
C(¼¼O)ACH).
IR (neat): 3033 (CAH), 2953 (CAH), 1730 [C¼¼O (ester)],
1714 [C¼¼O (ketone)] cmꢂ1
.
1H NMR (CDCl3, 400 MHz): d
2.24 (s, 3H, CH3), 2.50 (q, 2H, CH2COO), 2.75 (q, 2H,
CH2COO), 3.36 (m, 1H, CH), 5.10 (s, 4H, CH2OCO), 7.35 (m,
10H, Ph). 13C NMR (CDCl3, 100 MHz): d 29.4 (CH3AC), 35.4
(CHACH2AC(¼¼O)O), 44.0 (CH2ACH(AC)ACH2), 66.9 (COOA
CH2APh), 128.4 (Ph), 128.5 (Ph), 128.7 (Ph), 135.6 (Ph),
171.4 (CH2AC(¼¼O)AOACH2), 209.1 (CH3AC(¼¼O)ACH).
Anal. Calcd for C21H22O5: C, 71.17; H, 6.26. Found: C, 71.08;
H, 6.32.
This work was financially supported by JSR Corporation.
REFERENCES AND NOTES
Reaction of 2a and BnOH
1 Kamber, N. E.; Jeong, W.; Waymouth, R. M.; Pratt, R. C.;
Lohmeijer, B. G. G.; Hedrick, J. L. Chem. Rev. 2007, 107,
5813–5840.
The reaction is depicted in Scheme 5. Compound 2a (119
mg, 0.45 mmol), BnOH (49 mg, 0.45 mmol), p-TsOH (3.9 mg,
0.02 mmol), and 0.56 mL of CH2Cl2 was stirred at rt. After
24 h, the solvent was removed under reduced pressure. The
resulting residue was purified by silica gel chromatography
(eluent:chloroform/ethyl acetate ¼ 5/1) to afford 3a (66 mg,
0.18 mmol; 41%) as a colorless viscous oil.
2 Tsuji, H.; Ikada, Y. J. Appl. Polym. Sci. 1996, 60, 2367–2375.
3 Kylma, J.; Seppala, J. V. Macromolecules 1997, 30, 2876–
¨ ¨
¨
2882.
4 Lendlein, A.; Neuenschwander, P.; Suter, U. W. Macromol
Chem. Phys. 1998, 199, 2785–2796.
Reaction of 1 and XyD
5 Lendlein, A.; Colussi, M.; Neuenschwander, P.; Suter, U. W.
Macromol. Chem. Phys. 2001, 202, 2702–2711.
The reaction is depicted in Scheme 6. A typical procedure:
1a (156 mg, 1.00 mmol), XyD (138 mL, 1.00 mmol), and p-
TsOH (9.9 mg, 0.05 mmol) were stirred at 80 ꢀC under
reduced pressure (15 mmHg). After 3 h, the resulting mix-
ture was dissolved in 2 mL of chloroform and poured into
50 mL of methanol. The resulting copolymer was collected
by centrifugation, washed with methanol, and dried in vacuo
to afford 4a (264 mg, 94%) as a viscous oil. Mn and Mw/Mn
of 4a were 3.4 ꢃ 103 g/mol and 1.6, respectively.
6 Gorna, K.; Polowinski, S.; Gogolewski, S. J. Polym. Sci:
Polym. Chem. 2002, 40, 156–170.
7 Guan, J.; Sacks, M. S. Beckman, E. J.; Wagner, W. R. Bioma-
terials 2004, 25, 85–96.
8 Odelius, K.; Plikk, P.; Albertsson, A.-C. Biomacromolecules
2005, 6, 2718–2725.
9 Jeong, B.; Bae, Y. H.; Lee, D. S.; Kim, S. W. Nature 1997, 388,
860–862.
1288
JOURNAL OF POLYMER SCIENCE PART A: POLYMER CHEMISTRY 2012, 50, 1281–1289