Inorganic Chemistry
Article
[(PONOP)Ir(H)2][BArf4] (3-H2). A heavy-walled glass reaction vessel
was charged with 0.050 g (0.034 mmol) of 3-C2H4 and 10 mL of
methylene chloride. On a vacuum line, the solution was frozen at
−196 °C and 1 atm of dihydrogen was admitted to the vessel. The
solution was warmed to ambient temperature and stirred for 8 h. The
volatiles were removed in vacuo, the residue extracted in a minimal
amount of methylene chloride (ca. 1 mL), filtered through Celite, and
layered with pentane at −35 °C to afford 0.035 g (71%) of 3-H2 as
(4) (a) Denney, M. C.; Pons, V.; Hebden, T. J.; Heinekey, D. M.;
Goldberg, K. I. J. Am. Chem. Soc. 2006, 128, 12048−12049.
(b) Dietrich, B. L.; Goldberg, K. I.; Heinekey, D. M.; Autrey, T.;
Linehan, J. C. Inorg. Chem. 2008, 47, 8583−8585.
(5) Hebden, T. J.; Goldberg, K. I.; Heinekey, D. M.; Zhang, X.;
Emge, T. J.; Goldman, A. S.; Krogh-Jesperon, K. Inorg. Chem. 2010, 49,
1733−1742.
(6) Findlater, M.; Cartwright-Sykes, A.; White, P. S.; Schauer, C. K.;
Brookhart, M. J. Am. Chem. Soc. 2011, 133, 12274−12284.
(7) (a) Brookhart, M.; Lincoln, D. M. J. Am. Chem. Soc. 1988, 110,
8719−8720. (b) Brookhart, M.; Hauptmann, E.; Lincoln, D. M. J. Am.
Chem. Soc. 1992, 114, 10394−10401.
1
3
orange blocks. H NMR (400 MHz, C6D5Cl): δ 8.00 (t, JH−H = 8 Hz,
3
1H), 7.09 (d, JH−H = 8.4 Hz, 2H), 1.34 (vt, 36H, J = 8 Hz, P(tBu)2),
−25.07 (vt, J = 12 Hz, 2H, IrH). 31P{1H} NMR (162 MHz, C6D5Cl):
δ 206.8. 13C{1H} NMR (125.8 MHz, C6D5Cl): δ 26.8 (vt, 3.1 Hz, P−
C(CH3)3), 41.2 (vt, 10.7 Hz, P-C(CH3)3), 103.3, 146.1, 163.3 (C6H3N).
[(PONOP)Rh(C2H4)][BArf4] (4-C2H4). A heavy-walled glass reaction
vessel was charged with 0.050 g (0.093 mmol) of (PONOP)Rh−Cl,
0.083 g (0.093 mmol) of NaBArf4, and 10 mL of methylene chloride.
On a vacuum line, 1 atm of ethylene was added at ambient temp-
erature, and the yellow solution was stirred for 8 h. The volatiles were
removed in vacuo, the residue was extracted in a minimal amount of
methylene chloride (ca. 1 mL), filtered through Celite, and layered
with pentane at −35 °C to afford 0.059 g (45%) of 4-C2H4 as yellow
needles. Calcd for C55H55RhNP2O2BF24: C, 47.40; H, 3.98; N, 1.01.
Found: C, 47.17; H, 3.75; N, 1.01. 1H NMR (23 °C, CD2Cl2): δ 1.36
(vt, 7.6 Hz, 36H, P−C(CH3)3), 3.71 (m, 4H, C2H4), 6.88 (d, 8.4 Hz,
2H, m-C6H3N), 7.88 (t, 8.4 Hz, 1H, p-C6H3N). 31P{1H} NMR (23 °C,
CD2Cl2): δ 211.8 (d, 124 Hz). 13C{1H} NMR (23 °C, CD2Cl2):
δ 27.9 (vt, 4.0 Hz, P−C(CH3)3), 42.0 (m, P-C(CH3)3), 52.2 (C2H4),
103.4, 145.6, 163.9 (C6H3N).
(8) (a) Gottker-Schnetmann, I.; White, P. S.; Brookhart, M. J. Am.
̈
Chem. Soc. 2004, 126, 1804−1811. (b) Gottker-Schnetmann, I.; White,
̈
P. S.; Brookhart, M. J. Am. Chem. Soc. 2004, 126, 9330−9338.
(c) Bailey, B. C.; Schrock, R. R.; Kundu, S.; Goldman, A. S.; Huang,
Z.; Brookhart, M. Organometallics 2009, 28, 355. (d) Goldman, A. S.;
Roy, A. H.; Huang, Z.; Ahuja, R.; Schinski, W.; Brookhart, M. Science
2006, 312, 257. (e) Gutpa, M.; Hagen, C.; Flesher, R. J.; Kaska, W. C.;
Jensen, C. M. Chem. Commun. 1996, 2083. (f) Gupta, M.; Hagen, C.;
Kaska, C. W.; Cramer, R. E.; Jensen, C. M. J. Am. Chem. Soc. 1997,
119, 840. (g) Lee, D. W.; Kaska, W. C.; Jensen, C. M. Organometallics
1998, 17, 1. (h) Liu, F.; Pak, E. B.; Singh, B.; Jensen, C. M.; Goldman,
A. S. J. Am. Chem. Soc. 1999, 121, 4086. (i) Liu, F.; Goldman, A. S.
Chem. Commun. 1999, 655. (j) Morales-Morales, D.; Lee, D. W.;
Wang, Z.; Jensen, C. M. Organometallics 2001, 20, 1144. (k) Krogh-
Jespersen, K.; Czerw, M.; Kanzelberger, M.; Goldman, A. S. J. Chem.
Inf. Comput. Sci. 2001, 41, 56. (l) Krogh-Jespersen, K.; Czerw, M.;
Zhu, K.; Singh, B.; Kanzelberger, M.; Darji, N.; Achord, P. D.;
Renkema, K. B.; Goldman, A. S. J. Am. Chem. Soc. 2002, 124, 10797.
(9) (a) Punji, B.; Emge, T. J.; Goldman, A. S. Organometallics 2010,
29, 2702. (b) Williams, D. B.; Kaminsky, W.; Mayer, J. M.; Goldberg,
K. Inorg. Chem. Commun. 2008, 4195. (c) Lee, D. W.; Jensen, C. M.;
Morales-Morales, D. Organometallics 2003, 22, 4744. (d) Haenel,
M. W.; Oevers, S.; Angermund, K.; Kaska, W. C.; Fan, H.-J.; Hall,
M. B. Angew. Chem., Int. Ed. 2001, 40, 3596. (e) Kanzelberger, M.;
Singh, B.; Czerw, M.; Krogh-Jespersen, K.; Goldman, A. S. J. Am.
Chem. Soc. 2000, 122, 11017. (f) Wang, Z.; Tonks, I.; Belli, J.; Jensen,
C. M. J. Organomet. Chem. 2009, 694, 2854. (g) Staubitz, A.; Sloan, M.
E.; Robertson, A. P. M.; Friedrich, A.; Schneider, S.; Gates, P. J.;
Schmedt auf der Gunne, J.; Manners, I. J. Am. Chem. Soc. 2010, 132,
13332. (h) Yang, J.; Brookhart, M. Adv. Synth. Catal. 2009, 351, 175.
(i) Staubitz, A.; Soto, A. P.; Manners, I. Angew. Chem., Int. Ed. 2008,
47, 6212. (j) Hebden, T. J.; Denney, M. C.; Pons, V.; Piccoli, P. M. B.;
Koetzle, T. F.; Schultz, A. J.; Kaminsky, W.; Goldberg, K. I.; Heinekey,
D. M. J. Am. Chem. Soc. 2008, 130, 10812. (k) Bernskoetter, W. H.;
Brookhart, M. Organometallics 2008, 27, 2036. (l) Yang, J.; Brookhart,
[(PONOP)Rh(H2)][BArf4] (4-H2). 4-H2 was prepared in a fashion
1
similar to 3-H2 in 65% yield. H NMR (400 MHz, CD2Cl2): δ 7.90
(t, 3JH−H = 8 Hz, 1H), 6.91 (d, 3JH−H = 8.4 Hz, 2H), 1.32 (vt, 36H, J =
8 Hz, P(tBu)2), −8.26 (dt, JRh−H = 27.6 Hz, JP−H = 4.4 Hz, 2H, RhH).
31P{1H} NMR (162 MHz, CD2Cl2): δ 224.6 (d, JRh−P = 126.4 Hz).
13C{1H} NMR (125.8 MHz, CD2Cl2): δ 27.8 (vt, 4.0 Hz, P−C(CH3)3),
40.4 (m, P-C(CH3)3), 103.9, 146.5 (C6H3N), one C6H3N signal not
located.
ASSOCIATED CONTENT
■
S
* Supporting Information
Calculations of exchange rates of D and H in 1-H3 and kH/kD.
Detailed calculation of H−H distances in dihydrogen
complexes. Sample NMR spectra. This material is available
AUTHOR INFORMATION
■
Corresponding Author
M. J. Am. Chem. Soc. 2007, 129, 12656. (m) Gottker-Schnetmann, I.;
̈
Heinekey, D. M.; Brookhart, M. J. Am. Chem. Soc. 2006, 128, 17114.
(10) See for example: (a) Hermann, D.; Gandelman, M.; Rozenberg,
H.; Shimon, L. J. W.; Milstein, D. Organometallics 2002, 21, 812−818.
(b) Feller, M.; Karton, A.; Leitus, G.; Martin, J. M. L.; Milstein, D.
J. Am. Chem. Soc. 2006, 128, 12400−12401. (c) Iron, M. A.; Ben-Ari,
E.; Cohen, R.; Milstein, D. Dalton Trans. 2009, 9433−9439.
(11) Yamashita, M.; Nozaki, K. J. Am. Chem. Soc. 2009, 131, 14168−
14169.
Author Contributions
All authors have given approval to the final version of the
manuscript.
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
(12) (a) Bernskoetter, W. H.; Hanson, S. K.; Buzak, S. K.; Davis, Z.;
White, P. S.; Swartz, R.; Goldberg, K. I.; Brookhart, M. J. Am. Chem.
Soc. 2009, 131, 8603−8613. (b) Bernskoetter, W. H.; Schauer, C. K.;
Goldberg, K. I.; Brookhart, M. Science 2009, 326, 553−556.
(c) Findlater, M.; Bernskoetter, W. H.; Brookhart, M. J. Am. Chem.
Soc. 2010, 132, 4534.
■
We gratefully acknowledge the financial support of the NSF as
part of the Center for Enabling New Technologies through
Catalysis (CENTC, Grant CHE-0650456).
REFERENCES
(13) Desrosiers, P. J.; Cai, L.; Lin, Z.; Richards, R.; Halpern, J. J. Am.
Chem. Soc. 1991, 113, 4173.
■
(1) Kubas, G. J.; Ryan, R. R.; Swanson, B. I.; Vergamini, P. J.;
Wasserman, H. J. J. Am. Chem. Soc. 1984, 106, 451−452.
(2) (a) McGrady, G. S.; Guilera, G. Chem. Soc. Rev. 2003, 32, 383.
(b) Heinekey, D. M.; Oldham, W. J. Chem. Rev. 1993, 93, 913.
(3) See for example: Recent Advances in Hydride Chemistry; Peruzzini,
M., Poli, R., Eds.; Elsevier, 2002.
(14) Gelabert, R.; Moreno, M.; Lluch, J. M.; Lledos, A.; Pons, V.;
Heinekey, D. M. J. Am. Chem. Soc. 2004, 126, 8813.
(15) (a) Kaska, W. C.; Nemeh, S.; Shirazi, A.; Potuznik, S.
Organometallics 1988, 7, 13. (b) Xu, W.; Rosini., G. P.; Gupta, M.;
Jensen, C. M.; Kaska, W. C.; Krogh-Jespersen, K.; Goldman, A. S.
4677
dx.doi.org/10.1021/ic202630x | Inorg. Chem. 2012, 51, 4672−4678