with a graphite monochromator, utilising Cu Ka radiation
(l = 1.54184 A). The structure was solved by direct methods
and refined by full matrix least-square procedures on F2 using
the SHELX71 software package. All non-hydrogen atoms were
refined in the anisotropic approximation against F of all
observed reflections. All hydrogen atoms were added on
calculated positions, except for NH protons which were found
in difference Fourier synthesis. The figures were created using
the ORTEP-III und POV Ray program package.
3 (a) A. Corma, Chem. Rev., 1995, 95, 559; (b) A. Corma, Curr. Opin.
Solid State Mater. Sci., 1997, 2, 63.
4 (a) J. B. Jensen, J. B. Nicholas, T. Xu, L. W. Beck and
D. B. Ferguson, Acc. Chem. Res., 1996, 29, 259; (b) T. Xu,
N. Kob, R. S. Drago, J. B. Nicholas and J. F. Haw, J. Am. Chem.
Soc., 1997, 119, 12231; (c) J. F. Haw, T. Xu, J. B. Nicholas and
P. W. Goguen, Nature, 1997, 389, 832.
5 P. Umanski, J. Engelhardt and W. K. Hall, J. Catal., 1991,
127, 128.
6 D. Fargasiu, A. Ghenciu and J. Q. Li, J. Catal., 1996, 158, 116.
7 (a) S. Spange, A. Reuter and D. Lubda, Langmuir, 1999, 15, 2103;
(b) S. Spange, S. Prause, E. Vilsmeier and W. R. Thiel, J. Phys.
Chem. B, 2005, 109, 7280; (c) S. Spange, D. Kunzmann, R. Sens,
I. Roth, A. Seifert and W. Thiel, Chem.–Eur. J., 2003, 9, 4161;
(d) S. Prause, S. Spange and H. Barthel, Macromol. Chem. Phys.,
2005, 206, 364; (e) S. Spange, E. Vilsmeier, K. Fischer, A. Reuter,
S. Prause, Y. Zimmermann and C. Schmidt, Macromol. Rapid
Commun., 2000, 21, 643; (f) Y. Zimmermann, S. Anders,
K. Hofmann and S. Spange, Langmuir, 2002, 18, 9578;
(g) S. Spange, A. Reuter and W. Linert, Langmuir, 1998,
14, 3479; (h) S. Spange, E. Vilsmeier and Y. Zimmermann,
J. Phys. Chem. B, 2000, 104, 6417; (i) Y. Zimmermann and
S. Spange, J. Phys. Chem. B, 2002, 106, 12524; (j) M. El-Sayed,
A. Seifert and S. Spange, J. Sol-Gel Sci. Technol., 2005, 34, 77;
(k) S. Adolph, S. Spange and Y. Zimmermann, J. Phys. Chem. B,
2000, 104, 6429; (l) S. Spange, Y. Zimmermann and A. Graeser,
Chem. Mater., 1999, 11, 3245; (m) S. Prause and S. Spange,
J. Phys. Chem. B, 2004, 108, 5734; (n) V. Dutschk, S. Prause and
S. Spange, J. Adhes. Sci. Technol., 2002, 16, 1749.
8 (a) C. Rottman, G. S. Grader and D. Avnir, Chem. Mater., 2001,
13, 3631; (b) C. Rottman, G. S. Grader and D. Avnir, Langmuir,
1996, 12, 5505.
9 J. J. Michels and J. G. Dorsey, Langmuir, 1990, 6, 414.
10 D. J. Macquarrie, S. J. Tavener, C. W. Gray, P. A. Heath,
J. S. Rafelt, S. I. Saulzet, J. J. E. Hardy, J. H. Clark, P. Sutra,
D. Brunel, F. di Renzo and F. Fajula, New J. Chem., 1999, 23, 725.
11 Y. Imai and Y. Chujo, Macromolecules, 2000, 33, 3059.
12 O. A. El Seoud, A. D. Ramadan and B. M. Sato, J. Phys. Chem. C,
2010, 114, 10436.
13 D. Villemin and M. Hachemi, React. Kinet. Catal. Lett., 1994,
53, 147.
14 C. Reichardt and T. Welton, Solvents and Solvent Effects in
Organic Chemistry, Wiley-VCH, Weinheim, 2011, p. 82.
15 E. M. Kosower, J. Am. Chem. Soc., 1958, 80, 3253.
16 V. Gutmann, Electrochim. Acta, 1976, 21, 661.
17 C. Reichardt, Chem. Rev., 1994, 94, 2319.
18 M. J. Kamlet, J.-L. M. Abboud, M. H. Abraham and R. W. Taft,
J. Org. Chem., 1983, 48, 2877.
19 (a) J. Catalan and C. Diaz, Eur. J. Org. Chem., 1999, 885;
(b) P. S. Sierra, C. C. Tejuca, J. Catalan, C. Diaz, F. Garcia-
Blanco and G. E. Gorostidi, Helv. Chim. Acta, 2005, 88, 312;
(c) J. Catalan, J. Palomar, C. Diaz and J. L. G. de Paz, J. Phys.
Chem. A, 1997, 101, 5183; (d) J. Catalan, J. Org. Chem., 1997,
62, 8231; (e) J. Catalan and H. Hopf, Eur. J. Org. Chem., 2004,
4694; (f) J. Catalan, J. Phys. Chem. B, 2009, 113, 5951.
20 IUPAC. Compendium of Chemical Terminology, 2nd edn (the
‘‘Gold Book’’), Compiled by A. D. McNaught and A. Wilkinson,
Blackwell Scientific Publications, Oxford, 1997.
Crystal parameters of 4 are reported as follows: dark violet,
C15H15N3O3, M = 285.30 g molꢀ1; monoclinic, P21/n
,
a = 4.5663(2) A, b = 9.6254(5) A, c = 30.3857(14) A,
b = 91.668(5)1, V = 1334.96(11) A3, Z = 4, DC
=
1.420 g cmꢀ3, 8822 reflections collected in the 4.82–65.53
o-range, 2277 unique. The final R was 0.1530 for all data.
Elemental analyses were obtained on a Vario EL supplied
from Elementaranalysengerate GmbH (Hanau, Germany).
Conclusions
The solid state packing and the formation of self-complementary
aggregates within the structure of dyes 4, 5 and 7 are governed by
intermolecular hydrogen bonds between carbonyl oxygens and
NH protons of the barbituric acid moiety as well as the methyl
groups of the N,N-dimethylaniline ring, as evidenced by solid
state NMR and X-ray analysis. (Thio)barbituric acid derivatives
4–7 have a moderate to high solvatochromic range, and high
extinction coefficients in different organic solvents. The solvato-
chromic behaviour of these compounds is dominated by both the
dipolarity/polarisability properties and hydrogen bond donating
ability of the considered medium. In strong acidic media, proto-
nation of the compounds was observed resulting in a strong
hypsochromic shift of the UV/vis absorption band of 4–7. In
strong basic media, the NH-bearing (thio)barbituric acid deriva-
tives 4, 5, and 7 show solvatochromic interactions, deprotonation
and degradation. In addition, the dimethyl-functionalised barbi-
turic acid derivative 6 is less stable in basic media and solely
degradation reactions were observed. Adsorbed onto metal
surfaces, interactions between the dyes and oxidic layers were
detected, while complex UV/vis adsorption spectra were
obtained upon adsorption onto oxidic surfaces. In comparison
with the well-established solvatochromic probe dyes 1–3, the
(thio)barbituric acid derivatives 4–7 comprise rather promising
candidates for probing surface polarity parameters of coloured
oxidic materials.
21 C. Reichardt, Pure Appl. Chem., 2008, 80, 1415.
22 L. C. Fidale, C. Ißbrucker, P. L. Silva, C. M. Lucheti, Th. Heinze
and O. A. El Seoud, Cellulose, 2010, 17, 937.
Acknowledgements
Financial support by the Deutsche Forschungsgemeinschaft
and the Fonds der Chemischen Industrie is gratefully acknowledged.
We thank P. Kempe for the determination of the BET values.
23 (a) K. Fischer and S. Spange, Macromol. Chem. Phys., 2000,
201, 1922; (b) K. Fischer, T. Heinze and S. Spange, Macromol.
Chem. Phys., 2003, 204, 1315; (c) K. Fischer, S. Prause, S. Spange,
F. Cichos and C. Borczkyskowski, J. Polym. Sci., Part B: Polym.
Phys., 2003, 41, 1210; (d) K. Fischer, S. Spange, S. Fischer,
C. Bellmann and J. Adams, Cellulose, 2002, 9, 31; (e) S. Spange,
K. Fischer, S. Prause and T. Heinze, Cellulose, 2003, 10, 201;
(f) L. A. Pothan, Y. Zimmermann, S. Thomas and S. Spange,
J. Polym. Sci., Part B: Polym. Phys., 2000, 38, 2546.
24 W. Linert, R. F. Jameson, G. Bauer and A. Taha, J. Coord. Chem.,
1997, 42, 211.
25 (a) S. Spange and D. Keutel, Liebigs Ann. Chem., 1992, 1992, 423;
(b) S. Spange, M. Lauterbach, A.-K. Gyra and C. Reichardt,
Liebigs Ann. Chem., 1991, 1991, 323; (c) R. Lungwitz,
Referencesand notes
1 G. A. Olah, in Acidity and Basicity, Theory, Assessment and Utility,
ed. J. Fraissard and L. Petrakis, Nato Advanced Study Institute
Series C444, Kluwer Academic, Dordrecht, 1994, p. 305.
2 (a) R. S. Drago, S. C. Petronius and C. W. Chronister, Inorg.
Chem., 1994, 33, 367; (b) R. S. Drago, J. A. Dias and T. O. Maier,
J. Am. Chem. Soc., 1997, 119, 4444; (c) R. S. Drago, S. C. Dias,
M. Torrealbe and I. de Lima, J. Am. Chem. Soc., 1997, 119, 7702.
c
This journal is The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2012
New J. Chem., 2012, 36, 674–684 683