ORGANIC
LETTERS
2012
Vol. 14, No. 6
1600–1603
Synthesis of Fused Indazole Ring Systems
and Application to Nigeglanine
Hydrobromide
Aaron C. Sather, Orion B. Berryman, and Julius Rebek Jr.*
The Scripps Research Institute Mail MB-26, 10550 North Torrey Pines Road, La Jolla,
California 92037, United States
Received February 13, 2012
ABSTRACT
The single-step synthesis of fused tricyclic pyridazino[1,2-a]indazolium ring systems is described. Structural details revealed by crystallography
explain the unexpected reactivity. The method is applied to the gram scale synthesis of nigeglanine hydrobromide.
Indazole derivatives are a versatile class of compounds
that have found use in biology, catalysis, and medicinal
chemistry.1 Although rare in nature,2 indazoles exhibit a
variety of biological activities such as HIV protease
inhibition,3 antiarrhythmic and analgesic activities,4 anti-
tumor activity,5 and antihypertensive properties.6 Indazo-
lium ions have found additional uses as precursors to
N-heterocyclic carbenes (NHCs) with organo-catalytic
(1) Schmidt, A.; Beutler, A.; Snovydovych, B. Eur. J. Org. Chem.
2008, 4073–4095.
(2) (a) Atta-ur-Rahman, M. S.; He, C. H.; Clardy, J. Tetrahedron
Lett. 1985, 26, 2759–2762. (b) Atta-ur-Rahman, M. S.; Malik, S.; Hasan,
S.; Choudhary, M. I.; Ni, C.; Clardy, J. Tetrahedron Lett. 1995, 36, 1993–
1996. (c) Liu, Y.; Yang, J.; Liu, Q. Chem. Pharm. Bull. 2004, 52, 454–455.
(d) Ali, Z.; Ferreira, D.; Carvalho, P.; Avery, M. A.; Khan, I. A. J. Nat.
Prod. 2008, 71, 1111–1112.
(3) (a) Han, W.; Pelletier, J. C.; Hodge, C. N. Bioorg. Med. Chem.
Lett. 1998, 8, 3615–3620. (b) Patel, M.; Rodgers, J. D.; McHugh, R. J.,
Jr.; Johnson, B. L.; Cordova, B. C.; Klaba, R. M.; Bacheler, L. T.;
Erickson-Viitanen, S.; Ko, S. S. Bioorg. Med. Chem. Lett. 1999, 9, 3217–
3220. (c) Sun, J.-H.; Teleha, C. A.; Yan, J.-S.; Rodgers, J. D.; Nugiel,
D. A. J. Org. Chem. 1997, 62, 5627–5629.
(4) Mosti, L.; Menozzi, G.; Fossa, P.; Filippelli, W.; Gessi, S.;
Rinaldi, B.; Falcone, G. Arzneim.-Forsch./Drug Res. 2000, 50, 963–972.
(5) (a) Jakupec, M. A.; Reisner, E.; Eichinger, A.; Pongratz, M.;
Arion, V. B.; Galanski, M; Hartinger, C. G; Keppler, B. K. J. Med.
Chem. 2005, 48, 2831–2837. (b) Showalter, H. D. H.; Angelo, M. M.;
Berman, E. M.; Kanter, G. D.; Ortwine, D. F.; Ross-Kesten, S. G.;
Sercel, A. D.; Turner, W. R.; Werbel, L. M.; Worth, D. F.; Elslager,
E. F.; Leopald, W. R.; Shillis, J. L. J. Med. Chem. 1988, 31, 1527–1539.
(6) Goodman, K. B.; Cui, H.; Dowdell, S. E.; Gaitanopoulos, D. E.;
Ivy, R. L.; Sehon, C. A.; Stavenger, R. A.; Wang, G. Z.; Viet, A. Q.; Xu,
W.; Ye, G.; Semus, S. F.; Evans, C.; Fries, H. E.; Jolivette, L. J.;
Kirkpatrick, R. B.; Dul, E.; Khandekar, S. S.; Yi, T.; Jung, D. K.;
Wright, L. L.; Smith, G. K. J. Med. Chem. 2007, 50, 6–9.
(7) (a) Schmidt, A.; Snovydovych, B.; Habeck, T.; Drottboom, P;
Gjikaj, M.; Adam, A. Eur. J. Org. Chem. 2007, 4909–4916. (b) Schmidt,
A.; Snovydovych, B.; Gjikaj, M. Synthesis 2008, 17, 2798–2804.
(8) Jothibasu, R.; Huynh, H. V. Chem. Commun. 2010, 46, 2986–
2988.
(9) (a) Wheeler, R. C.; Baxter, E.; Campbell, I. B.; Macdonald.,
S. J. F. Org. Process Res. Dev. 2011, 15, 565–569. (b) Spiteri, C.; Keeling,
S.; Moses, J. E. Org. Lett. 2010, 12, 3368–3371. (c) Counceller, C. M.;
Eichman, C. C.; Wray, B. C.; Stambuli, J. P. Org. Lett. 2008, 10, 1021–
1023. (d) Wray, B. C.; Stambuli, J. P. Org. Lett. 2010, 12, 4576–4579. (e)
Inamoto, K.; Katsuno, M.; Yoshino, T.; Arai, Y.; Hiroya, K.; Sakamoto, T.
Tetrahedron 2007, 63, 2695–2711. (f) Lukin, K.; Hsu, M. C.; Fernando, D.;
Leanna, M. R. J. Org. Chem. 2006, 71, 8166–8172. (g) Jin, T.; Yamamoto,
Y. Angew. Chem., Int. Ed. 2007, 46, 3323–3325. (h) Stadlbauer, W. Sci.
Synth. 2002, 12, 227–324.
r
10.1021/ol300303s
Published on Web 03/02/2012
2012 American Chemical Society