Journal of Medicinal Chemistry
Article
Gaucher disease: physicokinetic and immunologic studies of the
residual enzyme in cultured fibroblasts from non-neuronopathic and
neuronopathic patients. Am. J. Med. Genet. 1985, 21, 529−549.
(18) Parenti, G. Treating lysosomal storage diseases with
pharmacological chaperones: from concept to clinics. EMBO Mol.
Med. 2009, 1, 268−279.
(19) Valenzano, K. J.; Khanna, R.; Powe, A. C. Jr.; Boyd, R.; Lee, G.;
Flanagan, J. J.; Benjamin, E. R. Identification and characterization of
pharmacological chaperones to correct enzyme deficiencies in
lysosomal storage disorders. Assay Drug Dev. Technol. 2011, 9, 213−
235.
ABBREVIATIONS USED
■
LSD, lysosomal storage disorder; GD, Gaucher disease; GBA,
glucosidase, beta, acid (glucocerebrosidase); GH, glycoside
hydrolase (glycosidase); GC, β-D-glucopyranosyl ceramide;
ERT, enzyme replacement therapy; SRT, substrate reduction
therapy; GCS, glucosylceramide synthase; ER, endoplasmic
reticulum; ERAD, endoplasmic reticulum associated degrada-
tion; EET, enzyme enhancement therapy; PC, pharmacological
chaperone; IFG, isofagomine.
(20) Benito, J. M.; Garcia Fernandez, J. M.; Mellet, C. O.
Pharmacological chaperone therapy for Gaucher disease: a patent
review. Expert Opin. Ther. Pat. 2011, 21, 885−903.
REFERENCES
■
(1) Futerman, A. H.; van Meer, G. The cell biology of lysosomal
storage disorders. Nat. Rev. Mol. Cell Biol. 2004, 5, 554−565.
(2) Wennekes, T.; van den Berg, R. J.; Boot, R. G.; van der Marel,
G. A.; Overkleeft, H. S.; Aerts, J. M. Glycosphingolipids: nature,
function, and pharmacological modulation. Angew. Chem., Int. Ed. Engl.
2009, 48, 8848−8869.
(3) Grabowski, G. A. Phenotype, diagnosis, and treatment of
Gaucher’s disease. Lancet 2008, 372, 1263−1271.
(4) Vocadlo, D. J.; Davies, G. J. Mechanistic insights into glycosidase
chemistry. Curr. Opin. Chem. Biol. 2008, 12, 539−555.
(5) Vitner, E. B.; Platt, F. M.; Futerman, A. H. Common and
uncommon pathogenic cascades in lysosomal storage diseases. J. Biol.
Chem. 2010, 285, 20423−20427.
(6) Pastores, G. M.; Giraldo, P.; Cherin, P.; Mehta, A. Goal-oriented
́
therapy with miglustat in Gaucher disease. Curr. Med. Res. Opin. 2009,
25, 23−37.
(7) Butters, T. D.; Dwek, R. A.; Platt, F. M. Imino sugar inhibitors for
treating the lysosomal glycosphingolipidoses. Glycobiology 2005, 15,
43R−52R.
(8) Belmatoug, N.; Burlina, A.; Giraldo, P.; Hendriksz, C. J.; Kuter,
D. J.; Mengel, E.; Pastores, G. M. Gastrointestinal disturbances and
their management in miglustat-treated patients. J. Inherited Metab. Dis.
2011, 34, 991−1001.
(9) Porto, C.; Cardone, M.; Fontana, F.; Rossi, B.; Tuzzi, M. R.;
Tarallo, A.; Barone, M. V.; Andria, G.; Parenti, G. The pharmacological
chaperone N-butyldeoxynojirimycin enhances enzyme replacement
therapy in Pompe disease fibroblasts. Mol. Ther. 2009, 17, 964−971.
(10) Marshall, J.; McEachern, K. A.; Chuang, W. L.; Hutto, E.; Siegel,
C. S.; Shayman, J. A.; Grabowski, G. A.; Scheule, R. K.; Copeland, D. P.;
Cheng, S. H. Improved management of lysosomal glucosylceramide
levels in a mouse model of type 1 Gaucher disease using enzyme and
substrate reduction therapy. J. Inherited Metab. Dis. 2010, 33, 281−289.
(11) Hruska, K. S.; LaMarca, M. E.; Scott, C. R.; Sidransky, E.
Gaucher disease: mutation and polymorphism spectrum in the
glucocerebrosidase gene (GBA). Hum. Mutat. 2008, 29, 567−583.
(12) Steet, R. A.; Chung, S.; Wustman, B.; Powe, A.; Do, H.;
Kornfeld, S. A. The iminosugar isofagomine increases the activity of
N370S mutant acid beta-glucosidase in Gaucher fibroblasts by several
mechanisms. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 13813−13818.
(13) Wei, R. R.; Hughes, H.; Boucher, S.; Bird, J. J.; Guziewicz, N.;
van Patten, S. M.; Qiu, H.; Pan, C. Q.; Edmunds, T. X-ray and
biochemical analysis of N370S mutant human acid β-glucosidase.
J. Biol. Chem. 2011, 286, 299−308.
(21) Butters, T. D. Gaucher disease. Curr. Opin. Chem. Biol. 2007, 11,
412−418.
(22) Chang, H.-H.; Asano, N.; Ishii, S.; Ichikawa, Y.; Fan, J.-Q.
Hydrophilic iminosugar active-site-specific chaperones increase
residual glucocerebrosidase activity in fibroblasts from Gaucher
patients. FEBS J. 2006, 273, 4082−4092.
(23) Luan, Z.; Higaki, K.; Aguilar-Moncayo, M.; Li, L.; Ninomiya, H.;
Nanba, E.; Ohno, K.; García-Moreno, M. I.; Ortiz Mellet, C.; García
Fernan
́
dez, J. M.; Suzuki, Y. A fluorescent sp2-iminosugar with
pharmacological chaperone activity for Gaucher disease: synthesis and
intracellular distribution studies. ChemBioChem 2010, 11, 2453−2464.
(24) Wang, G.-N.; Reinkensmeier, G.; Zhang, S.-W.; Zhou, J.; Zhang,
L.-R.; Zhang, L.-H.; Butters, T. D.; Ye, X.-S. Rational design and
synthesis of highly potent pharmacological chaperones for treatment
of N370S mutant Gaucher disease. J. Med. Chem. 2009, 52, 3146−
3149.
(25) Zhu, X.; Sheth, K. A.; Li, S.; Chang, H.-H.; Fan, J.-Q. Rational
design and synthesis of highly potent β-glucocerebrosidase inhibitors.
Angew. Chem., Int. Ed. 2005, 44, 7450−7453.
(26) Trapero, A.; Alfonso, I.; Butters, T. D.; Llebaria, A.
Polyhydroxylated bicyclic isoureas and guanidines are potent
glucocerebrosidase inhibitors and nanomolar enzyme activity
enhancers in Gaucher cells. J. Am. Chem. Soc. 2011, 133, 5474−5484.
(27) Oulaïdi, F.; Front-Deschamps, S.; Gallienne, E.; Lesellier, E.;
Ikeda, K.; Asano, N.; Compain, P.; Martin, O. R. Second-generation
iminoxylitol-based pharmacological chaperones for the treatment of
Gaucher disease. ChemMedChem 2011, 6, 353−361.
(28) Compain, P.; Martin, O. R.; Boucheron, C.; Godin, G.; Yu, L.;
Ikeda, K.; Asano, N. Design and synthesis of highly potent and
selective pharmacological chaperones for the treatment of Gaucher’s
disease. ChemBioChem 2006, 7, 1356−1359.
(29) Diot, J. D.; Moreno, I. G.; Twigg, G.; Mellet, C. O.; Haupt,
K.; Butters, T. D.; Kovensky, J.; Gouin, S. G. Amphiphilic
1-deoxynojirimycin derivatives through click strategies for chemical
chaperoning in N370S Gaucher cells. J. Org. Chem. 2011, 76, 7757−
7768.
(30) Ardes-Guisot, N.; Alonzi, D. S.; Reinkensmeier, G.; Butters,
T. D.; Norez, C.; Becq, F.; Shimada, Y.; Nakagawa, S.; Kato, A.;
Bleriot, Y.; Sollogoube, M.; Vauzeilles, B. Selection of the biological
́
activity of DNJ neoglycoconjugates through click length variation of
the side chain. Org. Biomol. Chem. 2011, 9, 5373−5388.
(31) Wennekes, T.; van den Berg, R. J. B. H. N.; Boltje, T. J.;
Donker-Koopman, W. E.; Kuijper, B.; van der Marel, G. A.; Strijland,
A.; Verhagen, C. P.; Aerts, J. M. F. G.; Overkleeft, H. S. Synthesis and
evaluation of lipophilic aza-C-glycosides as inhibitors of glucosylcer-
amide metabolism. Eur. J. Org. Chem. 2010, 1258−1283.
(32) Uygun, M.; Tasdelen, M. A.; Yagci, Y. Influence of type of
initiation on thiol−ene “click” chemistry. Macromol. Chem. Phys. 2010,
211, 103−110.
(33) Griesbaum, K. Problems and possibilities of the free-radical
addition of thiols to unsaturated compounds. Angew. Chem., Int. Ed.
Engl. 1970, 9, 273−287.
(34) Wittrock, S.; Becker, Y.; H., K. Synthetic vaccines of tumor-
associated glycopeptide antigens by immune-compatible thioether
(14) Ron, I.; Horowitz, M. ER retention and degradation as the
molecular basis underlying Gaucher disease heterogeneity. Hum. Mol.
Genet. 2005, 14, 2387−2398.
(15) Legini, E.; Orsini, J. J.; Hung, C.; Martin, M.; Showers, A.;
Scarpa, M.; Zhang, X. K.; Keutzer, J.; Muhl, A.; Bodamer, O. A.
Analysis of glucocerebrosidase activity in dry blood spots using tandem
mass spectrometry. Clin. Chim. Acta 2011, 412, 343−346.
(16) Li, Y.; Scott, C. R.; Chamoles, N. A.; Ghavami, A.; Pinto, B. M.;
Turecek, F.; Gelb, M. H. Direct multiplex assay of lysosomal enzymes
in dried blood spots for newborn screening. Clin. Chem. 2004, 50,
1785−1796.
(17) Grabowski, G. A.; Goldblatt, J.; Dinur, T.; Kruse, J.;
Svennerholm, L.; Gatt, S.; Desnick, R. J. Genetic heterogeneity in
2744
dx.doi.org/10.1021/jm201633y | J. Med. Chem. 2012, 55, 2737−2745