4076
J. E. Taylor et al. / Tetrahedron Letters 53 (2012) 4074–4076
OH
OH
OAc
OAc
N
O
(a)
(b)
DBN (1) (20 mol%)
MeCN, 80 °C, 16 h
+
OH
OAc
OH
+
OAc
OBz
+
+
+
Ph
Ph
Ph
Ph
Ph
Ph
Ph
−
N
BPh4
7a
7b
7c
84% conversion
7a 7b 7c
= 76:12:12
3a
6
:
:
OH
OH
OBz
OBz
N
O
DBN (1) (20 mol%)
+
N
OH
OBz
OH
+
+
Ph
−
°
MeCN, 80 C, 16 h
BPh4
Ph
8a
8b
8c
60% conversion
3b
6
8a 8b 8c
= 86:8:6
:
:
Scheme 4. Acylation of 1-phenyl-1,2-ethanediol (6) using (a) N-acetyl DBNÁBPh4 (3a) and (b) N-benzoyl DBNÁBPh4 (3b).
Lett. 2001, 42, 7427–7430; (k) Kondo, K.; Sekimoto, E.; Nakao, J.; Murakami, Y.
Tetrahedron 2000, 56, 5843–5856; (l) Kondo, K.; Sekimoto, E.; Miki, K.;
Murakami, Y. J. Chem. Soc., Perkin Trans. 1 1998, 2973–2974; (m) Murakami,
Y.; Kondo, K.; Miki, K.; Akiyama, Y.; Watanabe, T.; Yokoyama, Y. Tetrahedron
Lett. 1997, 38, 3751–3754; (n) Atkinson, R. S.; Barker, E.; Sutcliffe, M. J. Chem.
Commun. 1996, 1051–1052; (o) O’Sullivan, M. C.; Dalrymple, D. M. Tetrahedron
Lett. 1995, 36, 3451–3452; (p) Xu, D.; Prasad, K.; Repic, O.; Blacklock, T. J.
Tetrahedron Lett. 1995, 36, 7357–7360; (q) Keumi, T.; Shimada, M.; Morita, T.;
Kitajima, H. Bull. Chem. Soc. Jpn. 1990, 63, 2252–2256; (r) Kikugawa, Y.; Mitsui,
K.; Sakamoto, T.; Kawase, M.; Tamiya, H. Tetrahedron Lett. 1990, 31, 243–246;
(s) Murahashi, S. I.; Naota, T.; Nakajima, N. Chem. Lett. 1987, 879–882; (t) Itoh,
M.; Hagiwara, D.; Kamiya, T. Bull. Chem. Soc. Jpn. 1977, 50, 718–721; (u)
Hendrickson, J. B.; Bergeron, R. Tetrahedron Lett. 1973, 14, 4607–4610; (v)
Dornow, A.; Theidel, H. Angew. Chem. Int. Ed. 1954, 66, 605.
with 76% of the converted material being 2-hydroxy-2-phenethyl
acetate (7a) obtained from acetylation of the primary alcohol.
However, the reaction was not completely regioselective, as 12%
of the secondary ester 7b and 12% of the bis-acylated ester 7c were
also observed (Scheme 4a). It was found that using more sterically
demanding N-benzoyl DBNÁBPh4 (3b) as the acyl source improved
the regioselectivity of the acylation, with the primary ester 8a, sec-
ondary ester 8b and bis-benzoylated product 8c being formed in an
86:8:6 ratio, although the overall conversion was reduced to 60%
(Scheme 4b).
In conclusion, the bench-stable and highly crystalline N-acetyl
DBNÁBPh4 salt (3a) has been shown to be an efficient O-acetylating
agent for a range of primary and secondary alcohols. The ester
products can be isolated via a simple work-up procedure, without
the need for further purification by column chromatography. N-
Acetyl DBNÁBPh4 (3a) and N-benzoyl DBNÁBPh4 (3b) have also been
shown to acylate the primary alcohol functionality of diols that
5. For examples of enantiomerically pure acylating agents used in kinetic
resolution reactions, see: (a) Arseniyadis, S.; Valleix, A.; Wagner, A.;
Mioskowski, C. Angew. Chem. Int. Ed. 2004, 43, 3314–3317; (b) Kondo, K.;
Kurosaki, T.; Murakami, Y. Synlett 1998, 725–726; (c) Vedejs, E.; Chen, X. J. Am.
Chem. Soc. 1996, 118, 1809–1810; (d) Evans, D. A.; Anderson, J. C.; Taylor, M. K.
Tetrahedron Lett. 1993, 34, 5563–5566.
6. (a) Katritzky, A. R.; Avan, I.; Tala, S. R. J. Org. Chem. 2009, 74, 8690–8694; (b)
Katritzky, A. R.; Suzuki, K.; Wang, Z. Q. Synlett 2005, 1656–1665; (c) Katritzky,
A. R.; Rogovoy, B. V. Chem. Eur. J. 2003, 9, 4586–4593; (d) Katritzky, A. R.;
Zhang, Y. M.; Singh, S. K. Synthesis 2003, 2795–2798.
also contain
a secondary alcohol group with very high
regioselectivity.
7. (a) Avan, I.; Tala, S. R.; Steel, P. J.; Katritzky, A. R. J. Org. Chem. 2011, 76, 4884–
4893; (b) Katritzky, A. R.; Cusido, J.; Narindoshvili, T. Bioconjugate Chem. 2008,
19, 1471–1475; (c) Katritzky, A. R.; Yang, B.; Semenzin, D. J. Org. Chem. 1997, 62,
726–728.
Acknowledgment
8. Taylor, J. E.; Jones, M. D.; Williams, J. M. J.; Bull, S. D. Org. Lett. 2010, 12, 5740–
5743.
9. Taylor, J. E.; Bull, S. D.; Williams, J. M. J. Chem. Soc. Rev. 2012, 41, 2109–2121.
10. Taylor, J. E.; Jones, M. D.; Williams, J. M. J.; Bull, S. D. J. Org. Chem. 2012, 77,
2808–2818.
J.E.T. gratefully acknowledges the University of Bath for the
award of a Ph.D. scholarship.
References and notes
11. General procedure for the synthesis of N-acyl DBNÁBPh4 salts 3a–f: NaBPh4
(1 equiv) was added to a round-bottom flask and purged with nitrogen. Dry
MeCN (to make a 0.2 M solution of NaBPh4) and the appropriate acyl chloride
(1.04 equiv) were added and the resulting solution cooled to 0 °C. DBN (1)
(1 equiv) was added dropwise and a precipitate of NaCl began to form. The
reaction was left to stir for 1 h before being warmed to room temperature and
filtered through a pad of CeliteÒ, washing thoroughly with MeCN. The filtrate
was then concentrated under reduced pressure and the resulting N-acyl
DBNÁBPh4 salt purified by recrystallization from CH2Cl2 and hexane.
12. General procedure for the O-acetylation of alcohols using N-acetyl DBNÁBPh4 (3a):
N-acetyl DBNÁBPh4 (3a) (1.3 equiv, 0.65 mmol) was added to a carousel tube
and purged with nitrogen. Dry MeCN (2 mL), the appropriate alcohol (1 equiv,
0.5 mmol) and DBN (1) (20 mol %, 0.1 mmol) were added and the resulting
solution heated at 80 °C for 16 h. After being cooled to room temperature, the
mixture was filtered and concentrated under reduced pressure. The crude
product was suspended in a minimum amount of hot CHCl3 and allowed to
cool before filtering off the insoluble salts. The filtrate was washed with
NH4Cl(aq) and brine before being dried over MgSO4, filtered, and concentrated
under reduced pressure.
1. Katritzky, A. R.; He, H. Y.; Suzuki, K. J. Org. Chem. 2000, 65, 8210–8213.
2. Grasa, G. A.; Singh, R.; Nolan, S. P. Synthesis 2004, 971–985.
3. (a) Paravidino, M.; Hanefeld, U. Green Chem. 2011, 13, 2651–2657; (b) Hanefeld,
U. Org. Biomol. Chem. 2003, 1, 2405–2415.
4. (a) Lee, H. G.; Kim, M. J.; Lee, I. H.; Kim, E. J.; Kim, B. R.; Yoon, Y. J. Bull. Korean
Chem. Soc. 2010, 31, 1061–1063; (b) Lee, H.-G.; Kim, M.-J.; Park, S.-E.; Kim, J.-J.;
Kim, B. R.; Lee, S.-G.; Yoon, Y.-J. Synlett 2009, 2809–2814; (c) Singh, K.
Tetrahedron 2009, 65, 10395–10399; (d) Jang, J. H.; Kim, H. J.; Kim, J. N.; Kim, T.
H. Bull. Korean Chem. Soc. 2005, 26, 1027–1028; (e) Prasad, A. K.; Kumar, V.;
Malhotra, S.; Ravikumar, V. T.; Sanghvi, Y. S.; Parmar, V. S. Bioorg. Med. Chem.
2005, 13, 4467–4472; (f) Prasad, A. K.; Kumar, V.; Maity, J.; Wang, Z.;
Ravikumar, V. T.; Sanghvi, Y. S.; Parmar, V. S. Synth. Commun. 2005, 35, 935–
945; (g) Coniglio, S.; Aramini, A.; Cesta, M. C.; Colagioia, S.; Curti, R.;
D’Alessandro, F.; D’Anniballe, G.; D’Elia, V.; Nano, G.; Orlando, V.; Allegretti,
M. Tetrahedron Lett. 2004, 45, 5375–5378; (h) Kang, Y. J.; Chung, H. A.; Kim, J. J.;
Yoon, Y. J. Synthesis 2002, 733–738; (i) Kim, T. H.; Yang, G.-Y. Tetrahedron Lett.
2002, 43, 9553–9557; (j) Wakasugi, K.; Nakamura, A.; Tanabe, Y. Tetrahedron