Figure 2. Attempted mismatched double asymmetric crotyl-
boration reactions of aldehyde 2 with reagents 5 and 6 for
synthesis of the anti,anti-stereotriad of crocacin C.5f
Figure 1. Structures of crocacins AꢀD.
whether our new reagent (S)-E-10 could be adopted for
synthesis of the anti,anti-stereotriad unit in 7. Further-
more, the vinylstannane unit in 7 can be used in subsequent
CꢀC bond forming reactions, for example, Stille10 cou-
pling with vinyl iodide 8.5a We chose crocacin C as the
target molecule for this study because it can be converted
into other members of the crocacin family using a Cu-
catalyzed coupling reaction as demonstrated by Dias and
co-workers.11
Owing to the inability to directly access this requisite anti,
anti-stereotriad (e.g., 3), the central theme of multiple
approaches developed for the synthesis of crocacin C5,6
utilize indirect methods7 to prepare the anti,anti-stereotriad
with high diastereoselectivity. Strategies involving aldol
reactions,5a,eꢀh epoxide ring-opening reactions,5bꢀd or the
desymmetrization of meso cyclic precursors5i,6d have been
adopted to access the anti,anti-stereotriad units of crocacin
C precursors.
We recently described8 highly diastereoselective synthe-
ses of anti,anti-stereotriads using mismatched double
asymmetric δ-stannylcrotylboration reactions of chiral
aldehydes with crotylborane reagent (S)-E-109 (Figure 3).
Because it has been reported that reagents such as 5 and 6
are incapable of overriding the intrinsic diastereofacial
preference of aldehyde 2 (Figure 2), we were intrigued
(5) For total syntheses of crocacin C, see: (a) Feutrill, J. T.; Lilly,
M. J; Rizzacasa, M. A. Org. Lett. 2000, 2, 3365. (b) Chakraborty, T. K.;
Jayaprakash, S. Tetrahedron Lett. 2001, 42, 497. (c) Chakraborty, T. K.;
Jayaprakash, S.; Laxman, P. Tetrahedron 2001, 57, 9461. (d) Dias, L. C.;
de Oliveira, L. G. Org. Lett. 2001, 3, 3951. (e) Sirasani, G.; Paul, T.;
Andrade, R. B. J. Org. Chem. 2008, 73, 6386. (f) Sirasani, G.; Paul, T.;
Andrade, R. B. Bioorg. Med. Chem. 2008, 18, 3648. (g) Gillis, E. P.;
Burke, M. D. J. Am. Chem. Soc. 2008, 130, 14084. (h) Feutrill, J. T.;
Lilly, M. J.; White, J. M.; Rizzacasa, M. A. Tetrahedron 2008, 64, 4880.
(i) Candy, M.; Audran, G.; Bienayme, H.; Bressy, C.; Pons, J.-M. J. Org.
Chem. 2010, 75, 1354.
(6) For formal syntheses of crocacin C, see: (a) Gurjar, M. K.;
Khaladkar, T. P.; Borhade, R. G.; Murugan, A. Tetrahedron Lett. 2003,
44, 5183. (b) Raghavan, S.; Reddy, S. R. Tetrahedron Lett. 2004, 45,
Figure 3. Crocacin C, retrosynthetic analysis.
€
5593. (c) Besev, M.; Brehm, C.; Furstner, A. Collect. Czech. Chem.
Commun. 2005, 70, 1696. (d) Yadav, J. S.; Reddy, P. V.; Chandraiah, L.
Tetrahedron Lett. 2007, 48, 145. (e) Yadav, J. S.; Reddy, M. S.; Rao,
P. P.; Prasad, A. R. Synlett 2007, 2049.
(7) For reviews of methods commonly used to synthesize the anti, anti
dipropionate stereotriad: (a) Hoffmann, R. W. Angew. Chem., Int. Ed.
Engl. 1987, 26, 489. (b) Hoffmann, R. W.; Dahmann, G.; Andersen,
M. W. Synthesis 1994, 629.
Starting from acyl oxazolidinone 11, aldehyde 9 was
obtained in four steps according to known procedures
(Scheme 1).12 Addition of aldehyde 9 to the crotylborane
reagent (S)-E-10, generated from the enantioselective and
(8) Chen, M.; Roush, W. R. J. Am. Chem. Soc. 2012, 134, 3925.
(9) (a) Chen, M.; Roush, W. R. J. Am. Chem. Soc. 2011, 133, 5744.
For synthetic applications of reagent (S)-E-10, see: (b) Sun, H.; Abbott,
J. R.; Roush, W. R. Org. Lett. 2011, 13, 2734. (c) Yin, M.; Roush, W. R.
Tetrahedron 2011, 67, 10274. (d) Chen, M.; Roush, W. R. Org. Lett.
2012, 14, 426.
(10) (a) Stille, J. K. Angew. Chem., Int. Ed. Engl. 1986, 25, 508. (b)
Farina, V.; Krishnamurthy, V.; Scott, W. J. Org. React. 1997, 50, 1.
(11) Dias, L. C.; de Oliveira, L. G.; Vilcachagua, J. D.; Nigsch, F.
J. Org. Chem. 2005, 70, 2225.
Org. Lett., Vol. 14, No. 7, 2012
1881