extensive studies on metal-catalyzed CÀC bond-forming
reactions,8 the development of more efficient methods that
involve arylation at other positions is highly desirable.
C-Functionalizations at other positions of the sugar ring
leading to C-branched sugars are by far less explored because
they usually require many steps,9 the use of strongly basic
organolithium and Grignard reagents,10 or the use of toxic
reagents such as tin or mercury.11 Particularly, the synthesis
of 2-C-aryl-modified-carbohydrates12 is rare, even though
they are of potential interest for the development of new
biologically active carbohydrate mimetics.
Scheme 1. General Strategy towards the Preparation of 2-Ar-
ylglycals 9
We envisaged a general strategy for accessing 2-arylgly-
cals (Scheme 1) as key intermediates for synthesizing 2-C-
arylglycosides. We anticipated that this could be achieved
through the use of 2-haloglycals as privileged starting
materials for this transformation featuring a regiocontrol
element at the desired C-2 position.13À15 Herein we report
a general and efficient method for the synthesis of 2-aryl-
glycals 9 with different configurations under relatively
mild conditions by an aqueous, phosphine-free SuzukiÀ
Miyaura cross-coupling of 2-iodoglycals 5À8 with aryl
boronic acids in the presence of an inexpensive Pd
complex16 (Scheme 1).
Although iodo-derivates are preferable over chlorine or
bromine for these reactions17 they are less used, probably
due to the lack of a general method for their preparation.18
Thus, starting 2-iodoglycals 5À8 were prepared by treating
alkenyl sulfanyl derivatives 1 or commercially available
glycals 2 with iodonium reagents in aqueous media to
provide the corresponding 2-deoxy-2-iodopyranoses 3
which were then eliminated with Ph2SO/Tf2O and TTBP.
Importantly, the optimization of original reaction condi-
tions by driving the reaction under thermodynamic control
allowed the selective preparation of otherwise elusive
2-iodoglycals 5 and 6 (see Supporting Information (SI)
for details). Under kinetic control, 2-deoxy-2-iodo-trehaloses
4 were principally obtained.18,19
The feasibility of the SuzukiÀMiyaura cross-coupling
reaction was initially examined by using our recently
developed Pd catalyst16 (Table 1). Treatment of 2-iodoga-
lactal 5 and phenylboronic acid 10a with 2 mol % catalyst
and Na2HPO4 in 1:3 CH3CN/H2O afforded 2-phenylga-
lactal 11a in 82% yield with complete selectivity at C-2
after 300 min at 100 °C (entry 1). Attempts to decrease the
catalyst loading proved ineffective (entry 2). Changing the
solvent ratio from 1:3 to 1:1 CH3CN/H2O to increase the
solubility of 5 improved the yield of 11a to 90% after only
30 min at 100 °C (entry 3). Next, the effect of reaction
temperature was evaluated (entries 4À6), 125 °C being
optimal. The best yield for 11a (95%) was finally obtained
with 2 mol % catalyst in 1:1 CH3CN/H2O at 125 °C for
only 5 min (entry 6). Globally, the use of this cheap and
environmentally friendly catalyst provides several advan-
tages; carrying out the reaction under aqueous condi-
tions is key since the use of nonpolar solvents accelerates
(7) Bai, Y.; Zeng, J.; Cai, S.; Liu, X.-W. Org. Lett. 2011, 13, 4394.
ꢀ
(8) Gong, H.; Gagne, M. R. J. Am. Chem. Soc. 2008, 130, 12177.
(9) (a) Koester, D. C.; Holkenbrink, A.; Werz, D. B. Synthesis 2010,
3217. (b) Yin, J.; Linker, T. Org. Biomol. Chem. 2009, 7, 4829. (c)
Sridhar, P. R.; Kumar, P. V.; Seshadri, K.; Satyavathi, R. Chem.;Eur.
J. 2009, 15, 7526. (d) Elamparuthi, E.; Kim, B. G.; Yin, J.; Maurer, M.;
Linker, T. Tetrahedron 2008, 64, 11925. (e) Bouisset, T.; Gosselin, G.;
Griffe, L.; Meillon, J.-C.; Storer, R. Tetrahedron 2008, 64, 6657. (f)
Xavier, N. M.; Rauter, A. P. Carbohydr. Res. 2008, 343, 1523.
(10) Cleator, E.; McCusker, C. F.; Steltzer, F.; Ley, S. V. Tetrahedron
Lett. 2004, 45, 3077.
ꢀ
ꢀ
(11) Giese, B.; Gonzalez-Gomez, J. A.; Witzel, T. Angew. Chem., Int.
Ed. Engl. 1984, 23, 69.
(12) (a) Robinson, T. V.; Pedersen, D. S.; Taylor, D. K.; Tiekink,
E. R. T. J. Org. Chem. 2009, 74, 5093. (b) Maurya, S. K.; Hotha,
S. Tetrahedron Lett. 2006, 47, 3307. (c) Willson, M.; Perie, J. Spectrochim.
Acta Part A 1999, 55, 911. (d) Sugimura, H.; Osumi, K.; Koyama, T.
ꢀ
Chem. Lett. 1991, 20, 1379. (e) Auge, C.; Gautheron, C.; David, S.;
ꢀ
Malleron, A.; Cavaye, B.; Bouxom, B. Tetrahedron 1990, 46, 201. (f) Lee,
J. B.; Scalon, B. J. Chem. Soc. D 1969, 17, 955.
(13) (a) Hayashi, M.; Tsukada, K.; Kawabata, H.; Lamberth, C.
Tetrahedron 1999, 55, 12287. (b) Hayashi, M.; Amano, K.; Tsukada, K.;
Lamberth, C. J. Chem. Soc., Perkin Trans. 1 1999, 239. (c) Lamberth, C.;
Bednarski, M. Carbohydr. Lett. 1995, 1, 369.
(14) Chemler, S. R.; Iserloh, U.; Danishefsky, S. J. Org. Lett. 2001, 3,
2949.
(15) (a) Leibeling, M.; Milde, B.; Kratzert, D.; Stalke, D.; Werz, D. B.
Chem.;Eur. J. 2011, 17, 9888. (b) Leibeling, M.; Koester, D. C.;
Pawliczek, M.; Schild, S. C.; Werz, D. B. Nat. Chem. Biol. 2010, 6,
199. (c) Leibeling, M.; Koester, D. C.; Pawliczek, M.; Kratzert, D;
Dittrich, B.; Werz, D. B. Bioorg. Med. Chem. 2010, 18, 3656.
(16) (a) Spicer, C. D.; Davis, B. G. Chem. Commun. 2011, 47, 1698.
(b) Chalker, J. M.; Wood, C. S. C.; Davis, B. G. J. Am. Chem. Soc. 2009,
131, 16346.
ꢀ
ꢀ
ꢀ
(17) (a) Gomez, A. M.; Pedregosa, A.; Valverde, S.; Lopez, J. C.
ꢀ
Tetrahedron Lett. 2003, 44, 6111. (b) Gomez, A. M.; Danelon, G. O.;
Pedregosa, A.; Valverde, S.; Lopez, J. C. Chem. Commun. 2002, 2024.
(18) Rodrıguez, M. A.; Boutureira, O.; Matheu, M. I.; Dıaz, Y.;
ꢀ
(19) Backus, K. M.; Boshoff, H. I.; Barry, C. S.; Boutureira, O.;
Patel, M. K.; D’Hooge, F.; Lee, S. S.; Via, L. E.; Tahlan, K.; Barry,
C. E.; Davis, B. G. Nat. Chem. Biol. 2011, 7, 228.
´
´
ꢀ
Castillon, S.; Seeberger, P. H. J. Org. Chem. 2007, 72, 8998.
Org. Lett., Vol. 14, No. 7, 2012
1729