I. Berezowska et al. / Bioorg. Med. Chem. Lett. 22 (2012) 1899–1902
1901
Table 2
Opioid activities of TIPP analogues in the MVD and GPI assaysa
Compound
MVD
GPI
l
c
Kde (nM)
b
IC50 (nM)
IC50 (nM)
Ke (nM)
6030 1600
10
11
12
13
14
15
16
17
H-Cpa-Tic-Phe-Phe-OH
H-Hcp-Tic-Phe-Phe-OH
H-Dcap-Tic-Phe-Phe-OH
H-Bcp-Tic-Phe-Phe-OHe
H-Cpcp-Tic-Phe-Phe-OH
H-1-Ncp-Tic-Phe-Phe-OH
H-2-Ncp-Tic-Phe-Phe-OH
H-Tcp-Tic-Phe-Phe-OH
H-Tyr-Tic-Phe-Phe-OH
DPDPE
18.3 2.1
d
d
0.392 0.051
1.54 0.25
3.42 0.36
6.20 0.40
0.533 0.047
0.950 0.142
10.1 1.4
875 171 (IC30
730 109 (IC30
223 37 (IC40
23.4 5.1 (IC35
)
)
d
)
d
)
l
Inactive at 10
M
P.A.d
734 17
P.A.d
4.80 0.20
> 10000 (Inactive)
6340 410
2.02 1.6
a
b
c
Mean of 3 determinations SEM.
Determined against DPDPE.
Determined against TAPP.
Partial agonist.
d
e
Data taken from Ref. 10.
Table 3
35S]GTP
cS binding assay of TIPP analogues
6. Hruby, V. J.; Bartosz-Bechowski, H.; Davis, P.; Slaninova, J.; Zalewska, T.;
Stropova, D.; Porreca, F.; Yamamura, H. I. J. Med. Chem. 1997, 40, 3957.
7. Mosberg, H. I.; Omnaas, J. R.; Medzihradsky, F.; Smith, G. B. Life Sci. 1988, 1013,
43.
[
a
Compound
ED50 (nM)
ea
8. Vergura, R.; Balboni, G.; Spagnolo, G.; Gavioli, E.; Lambert, D. G.; McDonald, J.;
Trapella, C.; Lazarus, L. H.; Regoli, D.; Guerrini, R.; Salvadori, S.; Caló, G. Peptides
2008, 29, 93.
9. Schilller, P. W.; Nguyen, T. M.-D.; Weltrowska, G.; Wilkes, B. C.; Marsden, B. J.;
Lemieux, C.; Chung, N. N. Proc. Natl. Acad. Sci. U.S.A. 1992, 89, 11871.
10. Berezowska, I.; Chung, N. N.; Lemieux, C.; Wilkes, B. C.; Schiller, P. W. J. Med.
Chem. 2009, 52, 6941.
10
11
12
13
14
15
16
17
H-Cpa-Tic-Phe-Phe-OH
Antagonist
0.103 0.012
0.239 0.023
0.413 0.015
1.69 0.25
1.03 0.05
0.475 0.064
7.08 2.19
Antagonist
6.81 0.68
0
H-Hcp-Tic-Phe-Phe-OH
H-Dcap-Tic-Phe-Phe-OH
H-Bcp-Tic-Phe-Phe-OH
H-Cpcp-Tic-Phe-Phe-OH
H-1-Ncp-Tic-Phe-Phe-OH
H-2-Ncp-Tic-Phe-Phe-OH
H-Tcp-Tic-Phe-Phe-OH
H-Tyr-Tic-Phe-Phe-OH
DPDPE
0.486 0.060
0.527 0.080
0.678 0.076
0.933 0.026
0.894 0.009
0.989 0.44
0.643 0.051
0
11. Wang, W.; Obeyesekere, N. U.; McMurray, J. S. Tetrahedron Lett. 1996, 37, 6661.
12. All new Boc-protected amino acids were fully characterized by optical rotation
measurements, melting point determinations, 1H and 13C NMR spectra and
HRMS:
1
Compound 1. a2D0 + 15.7° (c 1, MeOH); mp 240–242 °C; 1H NMR (500 MHz,
CD3OD) d 7.88–7.79 (d, 2H, J = 8.0 Hz), 7.40–7.32 (d, 2H, J = 7.8 Hz), 4.46–4.36
(m, 1H), 3.27–3.21 (m, 1H), 3.02–2.95 (m, 1H), 1.41–1.37 (s, 8H), 1.36–1.34 (s,
1H); 13C NMR (125 MHz, CD3OD) d 173.9, 171.1, 156.6, 142.0, 132.1, 129.4,
127.6, 79.4, 54.8, 37.3, 27.5; HRMS (EI) m/e calcd for C15H20N2NaO5 [M+Na]+
331.1270, found 331.1023.
a
Mean of 3–6 determinations SEM.
agonists induce a receptor conformation distinct from that induced
by the full agonists. It has been convincingly demonstrated that
b2-adrenergic receptor partial agonists and full agonists induce
distinct receptor conformations.18,19 In the case of the d opioid partial
agonists and full agonists described here, distinct d receptor confor-
mations could be induced through diverse interactions of the various
large lipophilic substituents at the 1-position residue of these
peptides with hydrophobic residues of an accessory receptor binding
site. Because these structurally flexible peptides contain 4–6
aromatic rings they may have unique ability to selectively induce
or stabilize a number of distinct receptor conformations through
diverse hydrophobic interactions with the numerous aromatic and
aliphatic residues present in the receptor binding site.10 For this
reason, they need to be further examined in various assay systems
for possible functional selectivity.
Compound 2. a2D0 ꢀ 5.8° (c 1, DMSO); mp 152–153 °C; 1H NMR (500 MHz,
DMSO-d6) d 12.64–12.50 (br s, 1H), 8.38–8.32 (t, 1H, J = 5.5 Hz), 7.77–7.71 (d,
2H, J = 7.8 Hz), 7.34–7.29 (d, 2H, J = 8.0 Hz), 7.14–7.10 (d, 1H, J = 8.3 Hz), 4.15–
4.08 (m, 1H), 3.24–3.20 (m, 2H), 3.09–3.03 (m, 1H), 2.90–2.83 (m,1H), 1.54–
1.46 (m, 2H), 1.33–1.30 (s, 8H), 1.30–1.23 (m 7H), 0.89–0.84 (m, 3H); 13C NMR
(125 MHz, DMSO-d6) d 174.1, 166.5, 156.1, 141.9, 133.5, 129.6, 127.7, 78.8,
55.6, 39.8, 36.9, 31.7, 29.8, 28.8, 26.8, 22.8, 14.6; HRMS (EI) m/e calcd for
C
21H32O5N2Na [M+Na]+ 415.2209, found 415.2201.
Compound 3. a2D0 ꢀ 3.2° (c 1, DMSO); mp 136–137 °C; 1H NMR (500 MHz,
DMSO-d6) d 12.74–12.34 (br s, 1H), 8.36–8.32 (t, 1H, J 5.6 Hz), 7.77–7.72 (d, 2H,
J = 8.1 Hz), 7.34–7.28 (d, 2H, J = 8.1 Hz), 7.14–7.08 (d, 1H, J = 8.3 Hz), 4.15–4.08
(m, 1H), 3.26–3.19 (m, 2H), 3.09–3.03 (m, 1H), 2.90–2.83 (m, 1H), 1.54–1.46
(m, 2H), 1.34–1.30 (s, 8H), 1.29–1.21 (m, 15H), 0.88–0.83 (m, 3H); 13C NMR
(125 MHz, DMSO-d6) d 174.2, 166.5, 156.1, 141.9, 133.5, 129.6, 127.7, 78.8,
55.6, 39.8, 36.9, 32.0, 29.8, 29.7, 29.6, 29.5, 29.4, 28.8, 27.2, 22.8, 14.7; HRMS
(EI) m/e calcd for C25H40O5N2Na [M+Na]+ 471.2835, obsd 471.2823.
Compound 5. a2D0 + 12.2° (c 1, MeOH); mp 206–208 °C; 1H NMR (500 MHz,
DMSO-d6) d 12.75–12.50 (br s, 1H), 8.53–8.47 (t, 1H, J = 5.5 Hz), 7.77–7.72 (d,
2H, J = 8.0 Hz), 7.36–7.29 (d, 2H, J = 8.0 Hz),7.17–7.11 (m, 5H), 4.18–4.09
(m,1H), 3.48–3.41 (m, 2H), 3.10–3.04 (m, 1H), 2.91–2.85 (m, 1H), 2.81–2.73 (m,
2H), 2.49–2.40 (m, 1H), 1.80–1.66 (m, 6H), 1.40–1.34 (m, 4H), 1.33–1.30 (s,
8H), 1.27–1.24 (s, 1H); 13C NMR 125 MHz, DMSO-d6) d 175.4, 166.6, 146.0,
142.2, 137.6, 133.0, 129.6, 129.2, 127.7, 127.3, 78.8, 55.6, 45.0, 44.1, 36.9, 35.4,
34.7, 26.3, 25.5; HRMS (EI) m/e calcd for C29H38N2O5Na [M+Na]+ 517.2678,
obsd 517.3116.
Compound 5a. A small quantity of 5a was purified by HPLC for analytical
characterization: mp 118–120 °C; 1H NMR (500 MHz, CD3OD) d 7.24–7.17 (m,
4), 3.19–3.13 (t, 2H, J = 7.5 Hz), 2.96–2.89 (t, 2H, J = 7.5 Hz), 2.56–2.46 (m, 1H),
1.91–1.74 (m, 5H), 1.51–1.39 (m, 5H), 1.38–1.26 (m, 2H); 13C NMR (125 MHz,
CD3OD) d 147.2, 133.9, 128.6, 128.5, 127.3, 127.2, 44.4, 40.8, 34.5, 33.0, 26.8,
26.1; HRMS (EI) m/e calcd for C14H22N [M+H]+ 204.1752, found 204.1747.
Compound 6. a2D0 ꢀ 15.5° (c 1, DMSO); mp 138–140 °C; 1H NMR (500 MHz,
DMSO-d6) d 12.84–12.38 (br s, 1H), 8.68–8.61 (t, 1H, J = 5.6 Hz), 8.31–8.25 (d,
1H, J = 8.3 Hz), 7.96–7.90 (d, 1H, J = 8.0 Hz), 7.82–7.79 (d, 1H, J = 8.3 Hz), 7.79–
7.73 (d, 2H, J = 8.3 Hz), 7.62–7.56 (m, 1H), 7.56–7.50 (m, 1H), 7.46–7.38 (m,
1H), 7.38–7.30 (d, 2H, J = 8.3 Hz), 7.17–7.10 (d, 1H, J = 8.5 Hz), 4.18–4.10 (m,
1H), 3.63–3.55 (m, 2H), 3.35–3.28 (m, 2H), 3.10–3.04 (m, 1H), 2.91–2.85 (m,
1H), 1.38–1.33 (s, 8H),1.28–1.25 (s 1H); 13C NMR (125 MHz, DMSO-d6) d 174.2,
166.8, 156.4, 142.1, 136.2, 134.2, 132.4, 129.6, 127.7, 127.6, 126.4, 124.5, 78.8,
Acknowledgments
This work was supported by Grants from the Canadian Insti-
tutes of Health Research (MOP-89716) and the U.S. National Insti-
tutes of Health (DA004443).
References and notes
1. Pradhan, A. A.; Befort, K.; Nozaki, C.; Gavériaux-Ruff, C.; Kieffer, B. L. Trends
Pharmacol. Sci. 2011, 32, 581.
2. Cahill, C. M.; Morinville, A.; Hoffert, C.; O’Donnell, D.; Beaudet, A. Pain 2003,
101, 199.
3. Holdridge, S. V.; Cahill, C. M. Eur. J. Pain 2007, 11, 685.
4. Saitoh, A.; Kimura, Y.; Suzuki, T.; Kawai, K.; Nagase, H.; Kamei, J. J. Pharmacol.
Sci. 2004, 95, 374.
5. Hruby, V. J.; Agnes, R. S. Biopolymers (Peptide Sci.) 1999, 51, 391.