successful syntheses of natural products sclerotigenin, pegamine,
deoxyvasicinone and mackinazolinone. An intramolecular
version of this reaction was investigated in the synthesis of
deoxyvasicinone and mackinazolinone and showed that TfOH is
a good additive to promote the intramolecular reaction. Further
utilization of mackinazolinone in the synthesis of rutaecarpine
was demonstrated in an efficient manner.
Notes and references
Scheme 6 Synthesis of rutaecarpine.
1 J. Zhou and J. Fang, J. Org. Chem., 2011, 76, 7730. For a subsequent
related report using Ru: A. J. A. Watson, A. C. Maxwell and
J. M. J. Williams, Org. Biomol. Chem., 2012, 10, 240.
2 For recent reviews: (a) K. Fujita and R. Yamaguchi, Synlett, 2005, 4,
560; (b) T. D. Nixon, M. K. Whittlesey and J. M. J. Williams, Dalton
Trans., 2009, 753; (c) M. J. Krische, Angew. Chem., Int. Ed., 2009, 48,
34; (d) G. E. Debereiner and R. H. Crabtree, Chem. Rev., 2010, 110, 681;
(e) T. Suzuki, Chem. Rev., 2011, 111, 1825; (f) J. Choi,
A. H. R. MacArthur, M. Brookhart and A. S. Goldman, Chem. Rev.,
2011, 111, 1761.
3 (a) S. B. Mhaske and N. P. Argade, Tetrahedron, 2006, 62, 9787; (b) For
a recent review on quinazoline alkaloids: M. P. Joseph, Nat. Prod. Rep.,
2008, 25, 166.
4 K. Fujita, S. Furukawa and R. Yamaguchi, J. Organomet. Chem., 2002,
649, 289.
refluxing xylene (concentration = 0.5 M) under [Cp*IrCl2]2 cata-
lysis (2.5 mol%) only afforded product 15a in 35% yield. We
observed several byproducts resulting from intermolecular reac-
tions under these conditions. We reasoned that acid additives
would accelerate the intramolecular cyclizations from 17a to 16a
and thus increase the yield of 15a. Another factor to inhibit the
intermolecular byproduct formations will be the more dilute con-
centration of 18a. Among the acid additives (AcOH, TfOH,
H2SO4 and TFA), and concentrations of 18a in xylene (0.25 M,
0.125 M, 0.062 M and 0.031 M) screened, the combination of
10 mol% of TfOH with 18a concentration of 0.125 M in
refluxing xylene gave the best yield of 15a (68%). Under similar
unoptimized reaction conditions, the analog 15b was obtained
in lower yield of 47% even with a higher catalyst loading
(5 mol%).
5 A. H. Amin, D. R. Mehta and S. S. Samarth, Prog. Drug Res., 1970, 14,
218.
6 D. R. Harrison, P. D. Kennewell and J. B. Taylor, J. Heterocycl. Chem.,
1977, 14, 1191.
7 A low yield of 38% was reported for the same transformation: A. Witt
and J. Bergman, J. Heterocycl. Chem., 2002, 39, 351.
Both deoxyvasicinone 15a14 and mackinazolinone 15b11b
have been utilized for the synthesis of rutaecarpine 22. As an
example, a literature procedure was followed to transform macki-
nazolinone (15b) to rutaecarpine.11b As shown in Scheme 6,
compound 15b reacted with diazonium salt of aniline generated
in situ to give the corresponding hydrazone 21 in 97% yield.
Further Fisher-indole synthesis from 21 led to rutaecarpine (22)
smoothly in 94% yield.
8 (a) A. H. Amin and D. R. Mehta, Nature, 1959, 183, 1317;
(b) D. R. Mehta, J. S. Naravane and R. M. Desai, J. Org. Chem., 1963,
28, 445; (c) M. P. Jain, S. K. Koul, K. L. Dhar and C. K. Atal, Phyto-
chemistry, 1980, 19, 1880; (d) A. Al-Shamma, S. Drake, D. L. Flynn, L.
A. Mitscher, Y. H. Park, G. S. R. Rao, A. Simpson, J. K. Swayze,
T. Veysoglu and S. T. S. Wu, J. Nat. Prod., 1981, 44, 745.
9 (a) S. R. Johns and J. A. Lamberton, Chem. Commun. (London), 1965,
267; (b) J. S. Fitzgerald, S. R. Johns, J. A. Lamberton and A.
H. Redcliffe, Aust. J. Chem., 1966, 19, 151.
10 For examples: (a) A. V. Lygin and A. de Meijere, Org. Lett., 2009, 11,
389; (b) C. Zhang, C. K. De, R. Mal and D. Seidel, J. Am. Chem. Soc.,
2008, 130, 416; (c) J.-F. Liu, P. Ye, K. Sprague, K. Sargent, D. Yohannes,
C. M. Baldino, C. J. Wilson and S.-C. Ng, Org. Lett., 2005, 7, 3363;
(d) S. B. Mhaske and N. P. Argade, J. Org. Chem., 2001, 66, 9038.
11 For examples: (a) S. B. Mhaske and N. P. Argade, Tetrahedron, 2004, 60,
3417; (b) J. Kokosi, I. Hermecz, G. Szasz and Z. Meszaros, Tetrahedron
Lett., 1981, 22, 4861; (c) T. Kametani, T. Higa, C. V. Loc, M. Ihara,
M. Koizumi and K. Fukumoto, J. Am. Chem. Soc., 1976, 98, 6186.
12 O. Mitsunobu, Synthesis, 1981, 1.
Conclusions
We expanded our substrate scope and synthesized 2,3-disubsti-
tuted quinazolinones via Ir-catalyzed oxidative cyclisations
between primary alcohols and N-substituted o-aminobenzamides.
This reaction utilized an air and water stable Ir catalyst under
base-free conditions and without stoichiometric external oxi-
dants. Good functional group tolerance was demonstrated in the
13 Z. Z. Ma, Y. Hano, T. Nomura and Y. J. Chen, Heterocycles, 1999, 51,
1883.
14 J. Kokosi, G. Szasz and I. Hermecz, Tetrahedron Lett., 1992, 33, 2995.
This journal is © The Royal Society of Chemistry 2012
Org. Biomol. Chem., 2012, 10, 2389–2391 | 2391