Notes and references
y Crystal data for Hg2L2ꢁ1.5C4H8O2: C52H60Hg2N4S4ꢁC4H8O2ꢁC2H4O,
M = 1402.62, monoclinic, a = 9.9374(19) A, b = 26.392(4) A, c =
12.695(2) A, a = 90.001, b = 108.149(6)1, g = 90.001, V = 3163.8(9) A3,
T = 200(2) K, space group P21/n, Z = 2, m(MoKa) = 5.020 mmꢀ1
,
9084 reflections measured, 4795 independent reflections (Rint = 0.0620).
The final R1 values were 0.0751 (I > 2s(I)). The final wR(F2) values
were 0.1810 (I > 2s(I)). The final R1 values were 0.1325 (all data). The
final wR(F2) values were 0.2104 (all data). The goodness of fit on F2 was
1.047. CCDC 856487; for (ZnL)10: C260H300N20S20Zn10, M = 5000.10,
monoclinic, a = 26.7089(14) A, b = 25.6880(11)
c = 27.0302(16) A,
A,
a = 90.001, b = 117.334(7)1, g = 90.001, V = 16474.7(15) A3, T =
110(2) K, space group P21/n, Z = 2, m(MoKa) = 0.884 mmꢀ1, 80019
reflections measured, 38154 independent reflections (Rint = 0.0809).
The final R1 values were 0.0657 (I > 2s(I)). The final wR(F2) values
were 0.1344 (I > 2s(I)). The final R1 values were 0.1730 (all data).
The final wR(F2) values were 0.1414 (all data). The goodness of fit on
F2 was 0.965. CCDC 856488.
1 (a) J.-M. Lehn, Supramolecular Chemistry, VCH, Weinheim, 1995;
(b) J. W. Steed and J. L. Atwood, Supramolecular Chemistry, John
Wiley and Sons, Chichester, 2000.
2 (a) C. Piguet, M. Borkovec, J. Hamacek and K. Zeckert, Coord.
Chem. Rev., 2005, 249, 705–726; (b) M. J. Hannon and L. J. Childs,
Supramol. Chem., 2004, 16, 7–22; (c) M. Albrecht, Chem. Rev.,
2001, 101, 3457–3498; (d) C. Piguet, G. Bernardinelli and
G. Hopfgartner, Chem. Rev., 1997, 97, 2005–2062.
3 Y. Pang, S. Cui, B. Li, J. Zhang, Y. Wang and H. Zhang,
Inorg. Chem., 2008, 47, 10317–10324.
4 (a) E. C. Constable, C. E. Housecroft, T. Kulke, G. Baum and
D. Fenske, Chem. Commun., 1999, 195–196; (b) J. M. Senegas,
S. Koeller, G. Bernardinelli and C. Piguet, Chem. Commun., 2005,
2235–2237; (c) L. J. Childs, N. W. Alcock and M. J. Hannon,
Angew. Chem., Int. Ed., 2002, 41, 4244–4247.
Fig. 3 (a) Plot of relative fluorescence intensity (I/I0) of [(ZnL)10
]
versus the mole ratio of anions added. Fluorescence (b) and absorption
(c) titrations of (ZnL)10 with H2PO4ꢀ. The black traces in (b) and (c)
represent the spectra of H2L at 0.10 mM. The starting concentration of
(ZnL)10 for all titrations was 10 mM.
5 L. J. Childs, M. Pascu, A. J. Clarke, N. W. Alcock and
M. J. Hannon, Chem.–Eur. J., 2004, 10, 4291–4300.
6 (a) S. P. Argent, H. Adams, T. Riis-Johannessen, J. C. Jeffery,
L. P. Harding, O. Mamula and M. D. Ward, Inorg. Chem., 2006,
45, 3905–3919; (b) B. Hasenknopf, J.-M. Lehn, N. Boumediene,
A. Dupont-Gervais, A. Van Dorsselaer, B. Kneisel and D. Fenske,
J. Am. Chem. Soc., 1997, 119, 10956–10962.
7 B. Hasenknopf, J.-M. Lehn, N. Boumediene, E. Leize and A. Van
Dorsselaer, Angew. Chem., Int. Ed., 1998, 37, 3265–3268.
8 (a) B. Hasenknopf, J.-M. Lehn, B. O. Kneisel, G. Baum and D. Fenske,
Angew. Chem., Int. Ed. Engl., 1996, 35, 1838–1840; (b) K. E. Allen,
R. A. Faulkner, L. P. Harding, C. R. Rice, T. Riis-Johannessen, M. L.
Voss and M. Whitehead, Angew. Chem., Int. Ed., 2010, 49, 6655–6658.
9 (a) L. Bain, S. Bullock, L. Harding, T. Riis-Johannessen, G. Midgley,
C. R. Rice and M. Whitehead, Chem. Commun., 2010, 46, 3496–3498;
(b) O. R. Clegg, R. V. Fennessy, L. P. Harding, C. R. Rice, T. Riis-
Johannessen and N. C. Fletcher, Dalton Trans., 2011, 40, 12381–12387.
10 O. Mamula, A. von Zelewsky and G. Bernardinelli, Angew. Chem.,
Int. Ed., 1998, 37, 289–293.
significant quenching (Fig. 3a and b). This quenching is not
solely due to the protonation of the thiolates of the coordinated
ꢀ
L2ꢀ since even 20 equiv. of HSO4 and CH3COOH acids
have no effect on the fluꢀorescence intensity of (ZnL)10. To
better understand H2PO4 binding, titrations using absorp-
tion spectroscopies were carried out between (ZnL)10 and
different concentrations of H2PO4ꢀ. Upon the addition of
H2PO4ꢀ, the initial absorbance band of (ZnL)10 was slightly
shifted (from 300 to 313 nm) with increased intensity, and
reached a saturation point after the addition of 10 equiv.
1
(Fig. 3c). The absorption and H NMR spectra of the final
product showed characteristics nearly identical to that of the
ꢀ
simple H2L. These results indicate that H2PO4 can induce
total disassembly of the nano-scale cyclic helicate (ZnL)10 into
its reactants H2L and Zn2+. To the best of our knowledge, this
is the first example of total disassembly of synthetic circular
helicates in the literature.
11 H. B. Tanh Jeazet, K. Gloe, T. Doert, O. N. Kataeva, A. Jager,
G. Geipel, G. Bernhard, B. Buchner and K. Gloe, Chem. Commun.,
2010, 46, 2373–2375.
12 P. L. Jones, K. J. Byrom, J. C. Jeffery, J. A. McCleverty and
M. D. Ward, Chem. Commun., 1997, 1361–1362.
We realized the assembly of the remarkably high-nuclearity
circular helicate (ZnL)10 through careful design of ligands,
including structural features and charges. The procedure does
not require the use of counteranions as templates for the
spontaneous formation of these high-nuclearity metal based
supramolecules. In addition, we observed selective fluorescent
13 M. R. Bermejo, A. M. Gonza
M. J. Romero and M. Vazquez, Angew. Chem., Int. Ed., 2005,
44, 4182–4187.
´
lez-Noya, R. M. Pedrido,
´
14 J. Hamblin, F. Tuna, S. Bunce, L. J. Childs, A. Jackson, W. Errington,
N. W. Alcock, H. Nierengarten, A. Van Dorsselaer, E. Leize-Wagner
and M. J. Hannon, Chem.–Eur. J., 2007, 13, 9286–9296.
15 G. Hennrich and E. V. Anslyn, Chem.–Eur. J., 2002, 8, 2218–2224.
16 Y.-C. Horng, T.-L. Lin, C.-Y. Tu, T.-J. Sung, C.-C. Hsieh, C.-H. Hu,
H. M. Lee and T.-S. Kuo, Eur. J. Org. Chem., 2009, 1511–1514.
17 H. Fleischer, Coord. Chem. Rev., 2005, 249, 799–827.
18 T. Kawamoto, M. Nishiwaki, Y. Tsunekawa, K. Nozaki and
T. Konno, Inorg. Chem., 2008, 47, 3095–3104.
ꢀ
sensing of H2PO4 anions by (ZnL)10 accompanied by total
disassembly of the helicate.
We are grateful to the National Science Council (Taiwan)
for their financial support of this work.
c
3438 Chem. Commun., 2012, 48, 3436–3438
This journal is The Royal Society of Chemistry 2012