Journal of the American Chemical Society
Communication
(b) Eicher, T.; Graf, R.; Konzmann, H. Synthesis 1987, 887. (c) Eicher,
performed to produce 25 g (97% yield, 99% ee) of the product
3 in 8 h using 2.5 mol % of catalyst 5 (eq 3). Given that 5 can
T.; Lerch, D. Tetrahedron Lett. 1980, 21, 3751. (d) Krebs, A.; Gunter,
̈
A.; Versteylen, S.; Schulz, S. Tetrahedron Lett. 1984, 25, 2333.
(e) Weiss, R.; Hertel, M. J. Chem. Soc., Chem. Commun. 1980, 223.
(f) Pilli, R. A.; Rodriques, J. A. R.; Kascheres, A. J. Org. Chem. 1983,
48, 1084.
(6) (a) Breslow, R. J. Am. Chem. Soc. 1957, 79, 5318. (b) Breslow, R.;
Yuan, C. J. Am. Chem. Soc. 1958, 80, 5991.
(7) Leading reviews on cyclopropenium ions: (a) Komatsu, K.;
Kitagawa, T. Chem. Rev. 2003, 103, 1371. (b) Krebs, A. W. Angew.
Chem., Int. Ed. 1965, 4, 10. (c) Yoshida, Z.-i. Top. Curr. Chem. 1973, 40,
47. (d) D’yakonov, I. A.; Kostikov, R. R. Russ. Chem. Rev. 1967, 36, 557.
(8) Maksic and co-workers have calculated that 2,3-bisaminocyclo-
propenimines should be superbases, with proton affinities that far
exceed the corresponding guanidines (256 vs 235 kcal·mol−1). To the
best of our knowledge this prediction had not been experimentally
verified previous to our work. (a) Maksic, Z. B.; Kovacevic, B. J. Phys.
Chem. A 1999, 103, 6678. (b) Gattin, Z.; Kovacevic, B.; Maksic, Z. B.
Eur. J. Org. Chem. 2005, 3206.
be easily generated in significant quantities (see eq 2), it seems
that catalysis with chiral cyclopropenimines should be amenable
to relatively large-scale applications.
In summary, the experimental verification of the high basicity
of cyclopropenimines provides an important addition to the so-
called “superbase” arsenal.1 The exceptional performance of the
chiral cyclopropenimine 5 versus related guanidine bases
suggests that these new catalysts may enable important devel-
opments in the area of enantioselective Brønsted base catalysis.
The extraordinary ease of preparation of cyclopropenimines
and their amenability to use on a multigram scale as we have
demonstrated should make cyclopropenimines suitable to a
range of applications.
(9) Cyclopropenimines have recently been used as nitrogen(I)-based
ligands: Bruns, H.; Patil, M.; Carreras, J.; Vazquez, A.; Thiel, W.;
Goddard, R.; Alcarazo, M. Angew. Chem., Int. Ed. 2010, 49, 3680.
(10) Kaljurand, I.; Kutt, A.; Soovali, L.; Rodima, T.; Maemets, V.;
̈
̈
̈
Leito, I.; Koppel, I. A. J. Org. Chem. 2005, 70, 1019.
(11) Reactions of this type have also been achieved with chiral phase
transfer catalysis. For reviews: (a) Hashimoto, T.; Maruoka, K. Chem.
Rev. 2007, 107, 5656. (b) O’Donnell, M. J. Acc. Chem. Res. 2004, 37,
506. For selected examples: (c) Corey, E. J.; Noe, M. C.; Xu, F.
Tetrahedron Lett. 1998, 39, 5347. (d) O’Donnell, M. J.; Delgado, F.
Tetrahedron 2001, 57, 6641. (e) Shibuguchi, T.; Fukuta, Y.; Akachi, Y.;
Sekine, A.; Ohshima, T.; Shibasaki, M. Tetrahedron Lett. 2002, 43,
9539. (f) Arai, S.; Tsuji, R.; Nishida, A. Tetrahedron Lett. 2002, 43,
9535. (g) Akiyama, T.; Hara, M.; Fuchibe, K.; Sakamoto, S.;
Yamaguchi, K. Chem. Commun. 2003, 1734. (h) Ohshima, T.;
Shibuguchi, T.; Fukuta, Y.; Shibasaki, M. Tetrahedron 2004, 60,
7743. (i) Lygo, B.; Allbutt, B.; Kirton, E. H. M. Tetrahedron Lett. 2005,
46, 4461. (j) He, R.; Ding, C.; Maruoka, K. Angew. Chem., Int. Ed.
2009, 48, 4559. (k) Ma, T.; Fu, X.; Kee, C. W.; Zong, L.; Pan, Y.;
Huang, K.-W.; Tan, C.-H. J. Am. Chem. Soc. 2011, 133, 2828.
(12) Ishikawa, T.; Araki, Y.; SKumamoto, T.; Seki, H.; Fukuda, K.;
Isobe, T. Chem. Commun. 2001, 245. The product 4 was obtained as
the opposite antipode.
(13) Other examples of the use of chiral guanidines as Brønsted base
catalysts: (a) Ryoda, A.; Yajima, N.; Haga, T.; Kumamoto, T.;
Nakanishi, W.; Kawahata, M.; Yamaguchi, K.; Ishikawa, T. J. Org.
Chem. 2008, 73, 133. (b) Isobe, T.; Fukuda, K.; Ishikawa, T. J. Org.
Chem. 2000, 65, 7770. (c) Isobe, T.; Fukuda, K.; Ishikawa, T. J. Org.
Chem. 2000, 65, 7774. (d) Isobe, T.; Fukuda, K.; Yamaguchi, K.; Seki,
H.; Tokunaga, T.; Ishikawa, T. J. Org. Chem. 2000, 65, 7779.
(e) Zhang, G.; Kumamoto, T.; Heima, T.; Ishikawa, T. Tetrahedron
Lett. 2010, 51, 3927. (f) Isobe, T.; Fukuda, K.; Ishikawa, T.
Tetrahedron: Asymmetry 1998, 9, 1729. (g) Isobe, T.; Fukuda, K.;
Araki, Y.; Ishikawa, T. Chem. Commun. 2001, 243. (h) Kumamoto, T.;
Ebine, K.; Endo, M.; Araki, Y.; Fushimi, Y.; Miyamoto, I.; Ishikawa, T.;
Isobe, T.; Fukuda, K. Heterocycles 2005, 66, 1454. (i) Kitani, Y.;
Kumamoto, T.; Isobe, T.; Fukuda, K.; Ishikawa, T. Adv. Synth. Catal.
2005, 347, 1653. (j) Saito, N.; Ryoda, A.; Nakanishi, W.; Kumamoto,
T.; Ishikawa, T. Eur. J. Org. Chem. 2008, 2759.
ASSOCIATED CONTENT
* Supporting Information
■
S
Experimental procedures and product characterization data.
This material is available free of charge via the Internet at
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
Funding for this work was provided by the National Science
Foundation under CHE-0953259. Acknowledgment is also
made to the donors of the American Chemical Society
Petroleum Research Fund (49279-DNI) for partial support of
this research. T.H.L. is grateful for an Alfred P. Sloan Research
Fellowship and Young Investigator Awards from Abbott and
Amgen. J.S.B. is grateful for NDSEG and NSF fellowships. We
thank Aaron Sattler and the Parkin group for X-ray structure
determination, and the National Science Foundation (CHE-
0619638) is thanked for acquisition of an X-ray diffractometer.
We also thank the Leighton and Sames groups (Columbia
University) for use of their instrumentation.
REFERENCES
■
(14) Addition of amines to tetrachlorocyclopropene occurs readily:
Yoshida, Z.; Tawara, Y. J. Am. Chem. Soc. 1971, 93, 2573.
(1) Superbases for Organic Synthesis: Guanidines, Amidines, and Phosphazenes
and Related Organocatalysts; Ishikawa, T., Ed.; John Wiley and Sons: 2009.
(15) West, R.; Tobey, S. W. J. Am. Chem. Soc. 1966, 88, 2481.
(16) A similar effect has been observed with bis(dialkylamino)
cyclopropenyl carbenes: Schoeller, W. W.; Frey, G. D.; Bertrand, G.
Chem.Eur. J. 2008, 14, 4711.
́
(2) (a) Palomo, C.; Oiarbide, M.; Lopez, R. Chem. Soc. Rev. 2009, 38,
632. (b) Marcelli, T.; Hiemstra, H. Synthesis 2010, 1229. (c) Leow, D.;
Tan, C.-H. Synlett 2010, 1589. (d) Fu, X.; Tan, C.-H. Chem. Commun.
2011, 47, 8210.
(17) This phenomenon has been described as “ion pair strain” by
Weiss: (a) Weiss, R.; Brenner, T.; Hampel, F.; Wolski, A. Angew.
Chem., Int. Ed. Engl. 1995, 34, 439. (b) Weiss, R.; Rechinger, M.;
Hampel, F.; Wolski, A. Angew. Chem., Int. Ed. 1995, 34, 441. (c) Weiss,
R.; Schwab, O.; Hampel, F. Chem.Eur. J. 1999, 5, 968.
(3) Schwesinger, R.; Schlemper, H. Angew. Chem., Int. Ed. 1987, 26,
1167.
(4) Milbrath, D. S.; Verkade, J. G. J. Am. Chem. Soc. 1977, 99, 6607.
(5) Examples of the synthesis of cyclopropenimines: (a) Paquette,
L. A.; Barton, T. J.; Horton, N. Tetrahedron Lett. 1967, 8, 5039.
5555
dx.doi.org/10.1021/ja3015764 | J. Am. Chem. Soc. 2012, 134, 5552−5555