Primary Amine-Thioureas with Improved Catalytic Properties for “Difficult” Michael Reactions
2007, 46, 1570–1581; c) C. F. Barbas III, Angew. Chem.
the proposed intermediate enamine of catalyst 7 with
acetophenone as well as the superimposition of enam-
ines of catalysts 5 and 7 are illustrated in Figure 5, C
and D, respectively. In the case of enamine of catalyst
7, the phenyl ring of the (1R,2R)-diphenylethylenedi-
2008, 120, 44–50; Angew. Chem. Int. Ed. 2008, 47, 42–
47; d) A. Dondoni, A. Massi, Angew. Chem. 2008, 120,
4716–4739; Angew. Chem. Int. Ed. 2008, 47, 4638–4660;
e) P. Melchiorre, M. Marigo, A. Carlone, G. Bartoli,
Angew. Chem. 2008, 120, 6232–6265; Angew. Chem.
Int. Ed. 2008, 47, 6138–6171; f) X. Yu, W. Wang, Chem.
Asian J. 2008, 3, 516–532; g) A. Dondoni, A. Massi,
Angew. Chem. 2008, 120, 4716–4739; Angew. Chem.
Int. Ed. 2008, 47, 4638–4660; h) P. Melchiorre, M.
Marigo, A. Carlone, G. Bartoli, Angew. Chem. 2008,
120, 6232–6265; Angew. Chem. Int. Ed. 2008, 47, 6138–
6171; i) S. Bertelsen, K. A. Jørgensen, Chem. Soc. Rev.
2009, 38, 2178–2189; j) C. Zhong, X. Shi, Eur. J. Org.
Chem. 2010, 2999–3025; k) P. M. Pihko, I. Majander, A.
Erkkila, Top. Curr. Chem. 2009, 291, 29–75; l) J. B. Bra-
zier, N. C. O. Tomkinson, Top. Curr. Chem. 2009, 291,
281–347.
ACHTUNGTRENNUNGamine backbone seems to block efficiently the left
side of the thiourea moiety. It could be assumed that
this conformation locks the orientation of the nitroo-
lefin in such a way that the aryl group of the nitroole-
fin is away from the phenyl group of the diamine,
thus leading to higher levels of enantio-induction. In
the enamine of catalyst 5, the same phenyl group
from the catalystꢀs backbone seems to be far away,
thus not being able to produce such an efficient
blocking of the space, delivering lower levels of selec-
tivity.
[3] D. W. C. MacMillan, Nature 2008, 455, 304–308.
[4] For reviews on bifunctional organocatalysis, see:
a) A. G. Doyle, E. N. Jacobsen, Chem. Rev. 2007, 107,
5713–5743; b) P. S. Bhagury, B.-A. Song, S. Yang, D.-H.
Hu, W. Xue, Curr. Org. Synth. 2009, 6, 380–399; c) S. J.
Connon, Synlett 2009, 354–376; d) Z. Zhang, P. R.
Schreiner, Chem. Soc. Rev. 2009, 38, 1187–1198.
[5] For reviews on organocatalytic Michael reactions, see:
a) D. Almasi, D. A. Alonso, C. Najera, Tetrahedron:
Asymmetry 2007, 18, 299–365; b) S. B. Tsogoeva, Eur. J.
Org. Chem. 2007, 1701–1716; c) J. L. Vicario, D. Badia,
L. Carrillo, Synlett 2007, 2065–2092; d) S. Sulzer-Mosse,
A. Alexakis, Chem. Commun. 2007, 3123–3135.
[6] For selected examples of bifunctional thioureas catalyz-
ing asymmetric Michael reactions of ketones/aldehydes
with nitroolefins, see: a) M. P. Lalonde, Y. Chen, E. N.
Jacobsen, Angew. Chem. 2006, 118, 6514–6518; Angew.
Chem. Int. Ed. 2006, 45, 6366–6370; b) D. A. Yalalov,
S. B. Tsogoeva, S. Schwatz, Adv. Synth. Catal. 2006,
348, 826–832; c) T. Mandal, C.-G. Zhao, Angew. Chem.
2008, 120, 7828–7831; Angew. Chem. Int. Ed. 2008, 47,
7714–7717; d) H. Uehara, C. F. Barbas III, Angew.
Chem. 2009, 121, 10032–10036; Angew. Chem. Int. Ed.
2009, 48, 9848–9852; e) J.-R. Chen, Y.-J. Cao, Y.-Q.
Zhou, F. Tan, L. Fu, X.-Y. Zhu, W.-J. Xiao, Org.
Biomol. Chem. 2010, 8, 1275–1279; f) H. Uehara, R.
Imashiro, G. Hernandez-Torres, C. F. Barbas III, Proc.
Natl. Acad. Sci. USA 2010, 107, 20672–20677; g) D. B.
Ramachary, M. S. Prasad, R. Madhavachary, Org.
Biomol. Chem. 2011, 9, 2715–2721.
Conclusions
In conclusion, we have demonstrated that an easily
synthesized and low-cost primary amine-thiourea
based on (1R,2R)-1,2-diphenylethylenediamine and
(S)-di-tert-butyl aspartate is an excellent catalyst for
the “difficult” Michael reaction between aryl methyl
ketones and nitroolefins. The new catalyst may work
at low catalyst loading (5 mol%) providing the prod-
ucts in high to excellent yields and excellent enantio-
selectivities. The utility of this methodology was high-
lighted in the efficient synthesis of (S)- and (R)-baclo-
fen and (S)-phenibut.
Experimental Section
General Procedure for the Michael Reaction of
Ketones with Nitroolefins
A solution of catalyst 7 (5 mg, 0.01 mmol), nitroolefin
(0.2 mmol) and ketone (1 mmol) in chloroform (1 mL) was
stirred for the stated time. The solvent was evaporated and
the crude product was purified using flash column chroma-
tography eluting with the appropriate mixture of petroleum
ether (40–608C)/EtOAc to afford the desired product.
[7] H. Huang, E. N. Jacobsen, J. Am. Chem. Soc. 2006, 128,
7170–7171.
[8] S. B. Tsogoeva, S. Wei, Chem. Commun. 2006, 1451–
1453.
[9] K. Liu, H.-F. Cui, J. Nie, K.-Y. Dong, X.-J. Li, J.-A. Ma,
Org. Lett. 2007, 9, 923–925.
[10] B.-L. Li, Y.-F. Wang, S.-P. Luo, A. G. Zhang, Z.-B. Li,
X.-H. Bu, D.-Q. Xu, Eur. J. Org. Chem. 2010, 656–662.
[11] C. G. Kokotos, G. Kokotos, Adv. Synth. Catal. 2009,
351, 1355–1362.
References
[1] For books, see: a) A. Berkessel, H. Grçger, in: Asym-
metric Organocatalysis – From Biomimetic Concepts to
Powerful Methods for Asymmetric Synthesis, (Ed.: A.
Berkessel) Wiley-VCH, Weinheim, 2005; b) P. I. Dalko,
in: Enantioselective Organocatalysis Reactions and Ex-
perimental Procedure, (Ed.: P. I. Dalko), Wiley-VCH,
Weinheim, 2007.
[12] a) E. Bellis, G. Kokotos, Tetrahedron 2005, 61, 8669–
8676; b) E. Bellis, G. Kokotos, J. Mol. Catal. A 2005,
241, 166–174; c) E. Bellis, K. Vasilatou, G. Kokotos,
Synthesis 2005, 2407–2413; d) E. Tsandi, C. G. Kokotos,
[2] For selected reviews, see: a) S. Mukherjee, J. W. Yang,
S. Hoffmann, B. List, Chem. Rev. 2007, 107, 5471–5569;
b) D. Enders, C. Grondal, M. R. M. Huttl, Angew.
Chem. 2007, 119, 1590–1601; Angew. Chem. Int. Ed.
Adv. Synth. Catal. 2012, 354, 740 – 746
ꢁ 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
745