Y. Morisaki et al. / Tetrahedron Letters 52 (2011) 5504–5507
5507
according to the IUPAC classification,12 and it was associated with
References and notes
an H4-like hysteresis loop, indicating the existence of narrow slit-
like pores. Thus, the incorporation of the step structure of the
[2.2]paracyclophane moiety formed the slit-like mesopores, and
the Brunauer–Emmett–Teller (BET) surface area (SBET) was esti-
mated to be 501 m2 gÀ1. On the other hand, it has been reported
that the CMP P2 with phenylene instead of [2.2]paracyclophane
1. Brown, C. J.; Farthing, A. C. Nature 1949, 164, 915–916.
2. (a)Vögtle, F., Ed.Cyclophane Chemistry Synthesis Structures and Reactions;
John Wiley & Sons: Chichester, 1993; (b)Cyclophane Chemistry; Gleiter, R.,
HopfModern, H., Eds.; Wiley-VCH: Weinheim, Germany, 2004; (c) Hopf, H.
Angew. Chem., Int. Ed. 2008, 47, 9808–9812.
3. (a) Oldham, W. J., Jr.; Miao, Y. J.; Lachicotte, R. J.; Bazan, G. C. J. Am. Chem. Soc.
1998, 120, 419–420; (b) Bazan, G. C.; Oldham, W. J., Jr.; Lachicotte, R. J.; Tretiak,
S.; Chernyak, V.; Mukamel, S. J. Am. Chem. Soc. 1998, 120, 9188–9204; (c) Wang,
S.; Bazan, G. C.; Tretiak, S.; Mukamel, S. J. Am. Chem. Soc. 2000, 122, 1289–1297;
(d) Bartholomew, G. P.; Bazan, G. C. Acc. Chem. Res. 2001, 34, 30–39; (e)
Bartholomew, G. P.; Bazan, G. C. J. Am. Chem. Soc. 2002, 124, 5183–5196; (f)
Bartholomew, G. P.; Bazan, G. C. Synthesis 2002, 1245–1255; (g) Ruseckas, A.;
Namdas, E. B.; Lee, J. Y.; Mukamel, S.; Wang, S.; Bazan, G. C.; Sundström, V. J.
Phys. Chem. A 2003, 107, 8029–8034; (h) Bazan, G. C. J. Org. Chem. 2007, 72,
8635–8645.
4. Reviews and accounts, see: (a) Morisaki, Y.; Chujo, Y. Angew. Chem., Int. Ed.
2006, 45, 6430–6437; (b) Morisaki, Y.; Chujo, Y. Prog. Polym. Sci. 2008, 33, 346–
364; (c) Morisaki, Y.; Chujo, Y. Bull. Chem. Soc. Jpn. 2009, 82, 1070–1082; (d)
Morisaki, Y.; Chujo, Y. In Conjugated Polymer Synthesis; Chujo, Y., Ed.; Wiley-
VCH: Weinheim, 2010; pp 133–163; (e) Morisaki, Y.; Chujo, Y. Polym. Chem.
2011, 2, 1249–1257.
possesses a larger surface area of 834 m2 gÀ1 11a,c,13
The two-
.
dimensional network in P1 probably arises from the step and
stacked structure of the [2.2]paracyclophane unit in addition to
the three-dimensional network, while the three-dimensional net-
work structure is effectively created in P2 by the bending of the
struts, which leads to a larger surface area. The differences in these
structures reflect their morphologies.11a The SEM image of P1
reveals the aggregates of masses and plates (Fig. S16), while that
of P2 shows the aggregates of spherical particles (Fig. S17).14
Conclusion
5. (a) Tohda, Y.; Sonogashira, K.; Hagihara, N. Synthesis 1977, 9, 777–778; (b)
Sonogashira, K. In Handbook of Organopalladium Chemistry for Organic Synthesis;
Negishi, E., Ed.; Wiley-VCH: New York, 2002; pp 493–529.
In conclusion, we have synthesized a new [2.2]paracyclophane-
containing conjugated compound consisting of 1,3,5-tris[(2,5-
6. Morisaki, Y.; Chujo, Y. Macromolecules 2003, 36, 9319–9324.
7. (a) Bondarenko, L.; Dix, I.; Hinrichs, H.; Hopf, H. Synthesis 2004, 2751–2759; (b)
Hopf, H.; Dix, I. Synlett 2006, 1416–1418; (c) Jones, P. G.; Dix, I.; Hopf, H. Acta
Cryst. 2007, C63, o468–o473.
8. Nomoto, T.; Hosoi, H.; Fujino, T.; Tahara, T.; Hamaguchi, H. J. Phys. Chem. A
2007, 111, 2907–2912.
dimethylphenyl)ethynyl]benzenes. The compound exhibited
unique absorption band (cyclophane band) and emission from
the phane state, both of which were the result of the stacking
a
p–p
of the poorly extended conjugation systems of 1,3,5-tris[(2,5-
dimethylphenyl)ethynyl]benzene. We have prepared a CMP, in
which 1,3,5-tris[(2,5-dimethylphenyl)ethynyl]benzenes were
stacked. The CMP exhibited a type I nitrogen gas sorption profile
and an H4-like hysteresis loop, and possessed the slit-like mesop-
ores with a BET surface area of 501 m2 gÀ1. This [2.2]paracyclo-
phane-based CMP showed a morphology that was different from
that of the benzene-based CMP. The effect of the [2.2]paracyclo-
phane moiety on the CMP is currently under investigation. The
synthesis, characterization, and properties of [2.2]paracyclo-
phane-based CMPs will be reported in near future.
9. Yamaguchi, Y.; Ochi, T.; Miyamura, S.; Tanaka, T.; Kobayashi, S.; Wakamiya, T.;
Matsubara, Y.; Yoshida, Z. J. Am. Chem. Soc. 2006, 128, 4504–4505.
10. (a) Cooper, A. I. Adv. Mater. 2009, 21, 1291–1295; (b) Thomas, A.; Kuhn, P.;
Weber, J.; Titirici, M.-M.; Antonietti, M. Macromol. Rapid Commun. 2009, 30,
221–236.
11. For example, see: (a) Jiang, J. X.; Su, F.; Trewin, A.; Wood, C. D.; Campbell, N. L.;
Niu, H.; Dikckinson, C.; Ganin, A. Y.; Rosseinsky, M. J.; Khimyak, Y. J.; Cooper, A.
I. Angew. Chem., Int. Ed. 2007, 46, 8574–8578; (b) Germain, J.; Fréchet, J. M. J.;
Svec, F. J. Mater. Chem. 2007, 17, 4989–4997; (c) Jiang, J. X.; Su, F.; Trewin, A.;
Wood, C. D.; Niu, H.; Jones, T. A.; Khimyak, Y. Z.; Cooper, A. I. J. Am. Chem. Soc.
2008, 130, 7710–7720; (d) Weber, J.; Thomas, A. J. Am. Chem. Soc. 2008, 130,
6334–6335; (e) Jiang, J. X.; Su, F.; Niu, H.; Wood, C. D.; Campbell, N. L.;
Khimyak, Y. Z.; Cooper, A. I. Chem. Commun. 2008, 486–488; (f) Dawson, R.; Su,
F. B.; Niu, H.; Wood, C. D.; Jones, J. T. A.; Khimyak, Y. Z.; Cooper, A. I.
Macromolecules 2008, 41, 1591–1593; (g) Rose, M.; Böhlmann, W.; Sabo, M.;
Kaskel, S. Chem. Commun. 2008, 2462–2464; (h) Kuhn, P.; Antonietti, M.;
Thomas, A. Angew. Chem., Int. Ed. 2008, 47, 3450–3453; (i) Schwab, M. G.;
Fassbender, B.; Spiess, H. W.; Thomas, A.; Feng, X.; Müllen, K. J. Am. Chem. Soc.
2009, 131, 7216–7217; (j) Farha, O. K.; Spokoyny, A. M.; Hauser, B. G.; Bae, Y.-
S.; Brown, S. E.; Snurr, R. Q.; Mirkin, C. A.; Hupp, J. T. Chem. Mater. 2009, 21,
3033–3035; (k) Zhang, Y.; Riduan, S. N.; Ying, J. Y. Chem. Eur. J. 2009, 15, 1077–
1081; (l) Palkovits, R.; Antonietti, M.; Kuhn, P.; Thomas, A.; Schüth, F. Angew.
Chem., Int. Ed. 2009, 48, 6909–6912; (m) Chen, L.; Honsho, Y.; Seki, S.; Jinag, D.-
L. J. Am. Chem. Soc. 2010, 132, 6742–6748.
Acknowledgments
Financial support from The Inamori Foundation is gratefully
acknowledged. This work was also partially supported by the
Grant-in-Aid for Young Scientists (A) (No. 21685012) from the
Ministry of Education, Culture, Sports, Science and Technology,
Japan. Y.T. appreciates Research Fellowships from the Japan Society
for the Promotion of Science for Young Scientists. The authors are
grateful to Professor Susumu Kitagawa, Associate Professor Takashi
Uemura, and Dr. Nobuhiro Yanai (Department of Synthetic
Chemistry and Biological Chemistry, Kyoto University) for solid
state CP MAS 13C NMR spectroscopy and valuable discussions.
12. Sing, K. S. W.; Everett, D. H.; Haul, R. A. W.; Moscou, L.; Pierotti, R. A.;
Rouquérol, J.; Siemieniewska, T. Pure Appl. Chem. 1985, 57, 603–619.
13. Although CMP P2 has already been synthesized, we prepared it from 3 with
1,4-diethynylbenzene. The SBET value of P2 we synthesized was 822 m2 gÀ1
.
The 13C NMR CP MAS and FTIR spectra (Figs. S14 and S15), SEM image
(Fig. S15), XRD pattern (Fig. S19), and nitrogen adsorption–desorption
isotherm (Fig. S20) of P2 are shown in Supplementary data.
14. The morphology of P2 we synthesized (Fig. S17) was also almost identical to
the reported one; see Ref. 11a.
Supplementary data
Supplementary data (synthetic details, 1H and 13C NMR spectra)
associated with this article can be found, in the online version, at