V. Blechta et al.
and the Grant Agency of the Academy of Sciences of the
Czech Republic (grant. no. IAA 400720706).
References
[1] J. Schraml, P. Koehler, K. Licht, G. Engelhardt. J. Organomet. Chem.
1976, 121, C1–C3.
[2] J. Schraml, R. Ponec, V. Chvalovský, G. Engelhardt, H. Jancke,
H. Kriegsmann, M. F. Larin, V. A. Pestunovich, M. G. Voronkov. J. Orga-
nomet. Chem. 1979, 178, 55–73.
[3] V. A. Pestunovich, M. F. Larin, A. E. Pestunovich, M. G. Voronkov, Izv.
Akad. Nauk SSSR, Ser. Khim. 1977, 1455–7.
[4] J. Schraml, J. Pola, H. Jancke, G. Engelhardt, M. Černý, V. Chvalovský.
Collect. Czech. Chem. Commun. 1976, 41, 360–367.
[5] A. H. Haines, R. K. Harris, R. C. Rao. Org. Magn. Reson. 1977, 9,
432–447.
[6] J. Schraml. Prog. NMR Spectrosc. 1990, 22, 289–348.
[7] M. Maloò, S. Takahashi, H. Koshino. Tetrahedron Lett. 2007, 48,
7586–7590.
[8] G. Engelhardt, J. Schraml. Org. Magn. Reson. 1977, 9, 239–240.
[9] J. Schraml, J. Čermák, V. Chvalovský, A. Kasal, C. Bliefert, E. Krahé.
J. Organomet. Chem. 1988, 341, C6–C8.
[10] G. A. Morris, R. Freeman. J. Am. Chem. Soc. 1979, 101, 760–762.
[11] J. Schraml. Collect. Czech. Chem. Commun. 1983, 48, 3402–3406.
[12] T. A. Blinka, B. J. Helmer, R. West. Adv. Organomet. Chem. 1984, 23,
193–218.
[13] A. Kasal, J. Schraml, J. Čermák. Magn. Reson. Chem. 1994, 32,
394–398.
Figure 1. Relationship between chloroform-induced decrease in the sen-
sitivity to substituent effects (Δ= slope in acetone ꢂ slope in chloroform;
Table 8) and SAS values calculated for the accessibility of the oxygen
surface in the Si-O-C grouping of silylated phenols to hydrogen atom of
chloroform (SAS values are 2.9, 2.5, 1.6, and 0.2 Å2 for dimethylsilyl,
trimethylsilyl, tert-butyldimethylsilyl, and tert-butyldiphenylsilyl silylated
phenols, respectively).
Quantum chemical calculations
The calculation provides some support both to the features
described earlier and to the trends apparent from the data in
Tables 1–7. In all four series, the hydrogen bonding of chloroform
to the oxygen atom of the siloxy group leads to stabilization of
the complex (relative to the separated molecules). The calculated
signs of complexation shifts for the parent compounds (R = H) in
both SiMe3 and SiMe2tBu series agree with the experiment (i.e.
deshielding for 29Si and shielding for 13C shift of C-1 carbon) if
the infinite dilution shifts in acetone are taken for the shifts in
the free molecules. In the case of 13C chemical shift, the calcu-
lated complexation shifts (+1.30 and +1.54 ppm for SiMe3 and
SiMe2tBu compounds, respectively) agree also in magnitude with
the experiment (see Tables 2 and 3). The complexation shifts
calculated for 29Si are approximately 10 times larger than the
observed data.
[14] J. Schraml, M. Jakoubková, M. Kvíčalová, A. Kasal. J. Chem. Soc., Perkin
Trans 1994, 2, 1–2.
[15] K. H. Slotta, R. Behnisch. J. prakt. Chem. 1932, 135, 225–236.
[16] A. Stern, J. S. Swenton. J. Org. Chem. 1987, 52, 2763–2768.
[17] A. J. Shaka, J. Keeler, R. Freeman. J. Magn. Reson. 1983, 53, 313–340.
[18] J. Sýkora, V. Blechta, V. Sychrovský, J. Hetflejš, S. Šabata, L. Soukupová,
J. Schraml. Magn. Reson. Chem. 2006, 44, 669–674.
[19] G. C. Levy, G. L. Nelsonin, Carbon-13 Nuclear Magnetic Resonance for
Organic Chemists, Anonymous, Wiley & Sons, Inc, New York, 1972pp.,
pp. 79.
[20] M. L. Connolly. Science 1983, 221, 709–10.
[21] A. Bondi. J. Phys. Chem. 1964, 68, 441–451.
[22] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R.
Cheeseman, J. A. Montgomery Jr., T. Vreven, K. N. Kudin, J. C. Burant,
J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi,
G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara,
K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda,
O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross,
V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann,
O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y.
Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G.
Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K.
Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz,
Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu,
A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith,
M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M.
W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople,
Gaussian 03, Revision D.02, Gaussian, Inc., Wallingford CT, 2004.
[23] W. Kutzelnigg, U. Fleischer, M. Schindlerin, The IGLO-Method: Ab
Initio Calculation and Interpretation of NMR Chemical Shifts and
Magnetic Susceptibilities, Anonymous, Springer, Heidelberg, 1990pp.,
pp. 165.
[24] O. Exner, Correlation Analysis of Chemical Data, Plenum Press, New
York, 1988.
[25] R. K. Harris, J. D. Kennedy, W. McFarlanein, in NMR and the Periodic
Table (Eds: R. K. Harris, B. E. Mann), (EdsAcademic Press, London,
1978pp., pp. 309–378.
[26] V. A. Pestunovich, M. F. Larin, E. I. Dubinskaya, M. G. Voronkov. Dokl.
Akad. Nauk SSSR 1977, 233, 378–381.
[27] P. Koehler, H. Geissler, M. Jakoubková, G. Dube, K. Licht. Z. anorg.
allg. Chem. 1978, 440, 183–196.
Conclusion
If the sensitivity to para substitution is measured by the slopes of
the simplest Hammett-type dependence of the chemical shifts
on sp constants, the 13C chemical shifts of C-1 carbons are more
sensitive to substituent effects than the 29Si chemical shifts of
the Si atom separated by two bonds further away from the
substituent. The sensitivity of 29Si chemical shifts depends on
the nature of the silyl group. An analogous sensitivity of 13C
chemical shifts is obscured by large errors in the determined
slopes, which makes them virtually independent on the nature
of the attached siloxy group. The effect of association with
chloroform on this carbon chemical shift sensitivity is very small
except for SiMe2H-substituted phenols. The same effect on 29Si
chemical shift is linearly related to SAS of the oxygen atom in
the Si-O-C link, making thus the effect in the series of the
SiPh2tBu compounds negligible.
[28] H. Watanabe, R. Akaba, T. Iezumi, Y. Nagai. Bull. Chem. Soc. Jpn. 1980,
53, 2981–2985.
Acknowledgements
[29] Y. Nagai, M.-A. Ohtsuki, T. Nakano, H. Watanabe. J. Organomet. Chem.
1972, 35, 81–90.
[30] J. F. R. Jaggard, A. Pidcock. J. Organomet. Chem. 1969, 16, 324–326.
The authors acknowledge the financial support provided by the
Science Foundation of the Czech Republic (grant no. 203/06/0738)
wileyonlinelibrary.com/journal/mrc
Copyright © 2012 John Wiley & Sons, Ltd.
Magn. Reson. Chem. 2012, 50, 128–134