Intermolecular Imination and Amidation without Catalyst
(53 mg, 77% yield, 51% conversion) as a gray solid. 1H NMR
(400 MHz, [D6]DMSO): δ = 8.72 (s, 2 H), 7.49–7.47 (m, 5 H), 5.89–
5.78 (m, 1 H), 5.22–5.14 (m, 2 H), 4.1 (d, J = 6.4 Hz, 2 H) ppm.
13C NMR (100 MHz, [D6]DMSO): δ = 141.8, 134.3, 132.3, 130.0,
129.8, 129.5, 126.1, 64.6 ppm. HRMS (ESI): calcd. for C11H13N4S
[M + H]+ 233.0861; found 233.0863.
[1]
[2]
a) M. M. Díaz-Requejo, P. J. Pérez, Chem. Rev. 2008, 108,
3379–3394; b) H. M. L. Davies, J. R. Manning, Nature 2008,
451, 417–424; c) P. Müller, C. Fruit, Chem. Rev. 2003, 103,
2905–2919; d) C. Florence, H. D. Robert, D. Philippe, Chem.
Commun. 2009, 5061–5072.
a) C. R. Johnson, Acc. Chem. Res. 1973, 6, 341–347; b) M.
Reggelin, C. Zur, Synthesis 2000, 1–64; c) H. Okamura, C.
Bolm, Chem. Lett. 2004, 33, 482–487; d) M. C. Carreno, Chem.
Rev. 1995, 95, 1717–1760; e) S. Meehan, R. D. Little, J. Org.
Chem. 1997, 62, 3779–3781.
(4-Nitrophenyl)phenyl-N-(1,2,4-triazol-4-yl)sulfilimine (6e): Follow-
ing GP2 using phenyl(4-nitrophenyl) sulfides and 4-amino-4H-
1,2,4-trizaole gave 6e (110 mg, 95% yield, 75% conversion) as a
yellow solid. 1H NMR (400 MHz, CDCl3): δ = 8.42 (d, J = 8.8 Hz,
2 H), 7.90 (s, 2 H), 7.85 (d, J = 8.8 Hz, 2 H), 7.71 (m, 1 H), 7.62
(t, J = 7.6 Hz, 2 H), 7.52 (d, J = 7.6 Hz, 2 H) ppm. 13C NMR
(100 MHz, CDCl3): δ = 143.8, 142.8, 134.8, 130.8, 130.0. 129.7,
128.9, 126.6, 124.0 ppm. HRMS (ESI): calcd. for C14H12 N5O2S
[M + H]+ 314.0712; found 314.0718.
[3]
[4]
a) D. Tanner, Angew. Chem. 1994, 106, 625–646; b) W.
McCoull, F. A. Davies, Synthesis 2000, 1347–1365; c) P. Dau-
ban, R. H. Dodd, Synlett 2003, 1571–1586.
a) X. L. Hou, J. Wu, R. Fan, C. H. Ding, Z. B. Luo, L. X. Dai,
Synlett 2006, 181–193; b) J. B. Sweeney, Chem. Soc. Rev. 2002,
31, 247–258; c) B. Zwanenburg, P. Ten Holte, Top. Curr. Chem.
2001, 216, 93–124; d) R. H. Dodd, Molecules 2000, 5, 293–
298; e) R. S. Atkinson, Tetrahedron 1999, 55, 1519–1559; f) H.
Stamm, J. Prakt. Chem. 1999, 4, 319–331; g) H. M. I. Osborn,
J. Sweeney, Tetrahedron: Asymmetry 1997, 8, 1693–1715; h) D.
Tanner, Angew. Chem. 1994, 106, 625; Angew. Chem. Int. Ed.
Engl. 1994, 33, 599–619; i) M. Kasai, M. Kono, Synlett 1992,
778–790.
a) D. A. Evans, M. M. Faul, M. T. Bilodeau, J. Am. Chem. Soc.
1994, 116, 2742–2753; b) J. U. Jeong, B. Tao, I. Sagasser, H.
Henniges, K. B. Sharpless, J. Am. Chem. Soc. 1998, 120, 6844–
6845; c) Z. Li, K. R. Conser, E. N. Jacobsen, J. Am. Chem.
Soc. 1993, 115, 5326–5327; d) T. Siu, A. K. Yudin, J. Am.
Chem. Soc. 2002, 124, 530–531; e) S. M. Au, J. S. Huang, W. Y.
Yu, W. H. Fung, C. M. Che, J. Am. Chem. Soc. 1999, 121,
9120–9132; f) S. I. Ali, M. D. Nikalje, A. Sudalai, Org. Lett.
1999, 1, 705–707; g) J. C. Antilla, W. D. Wulff, J. Am. Chem.
Soc. 1999, 121, 5099–5100; h) K. Guthikonda, D. J. Bois, J.
Am. Chem. Soc. 2002, 124, 13672–13673; i) H. Kawabata, K.
Omura, T. Katsuki, Tetrahedron Lett. 2006, 47, 1571–1574; j)
C. M. Agathe, A. F. Salit, C. Bolm, Chem. Commun. 2008,
5975–5977; k) J. W. W. Chang, M. U. Thi, Z.-Y. Zhang, Y.-J.
Xu, W. H. Philip, Tetrahedron Lett. 2009, 50, 161–164; l) Y. Li,
B. Diebl, A. Raith, F. E. Kühn, Tetrahedron Lett. 2008, 49,
5954–5956; m) Z. Li, R. W. Quan, E. N. Jacobsen, J. Am.
Chem. Soc. 1995, 117, 5889–5890; n) Y. Cui, C. He, J. Am.
Chem. Soc. 2003, 125, 16202–16203; o) A. Raza, Y. Y. Sham,
R. Vince, Bioorg. Med. Chem. Lett. 2008, 18, 5406–5410; p) D.
Lu, Y. Y. Sham, R. Vince, Bioorg. Med. Chem. 2010, 18, 2037–
2048.
a) C. Bolm, O. Simic, J. Am. Chem. Soc. 2001, 123, 3830–3831;
b) M. Harmata, S. K. Ghosh, Org. Lett. 2001, 3, 3321–3323;
c) C. Bolm, M. Martin, O. Simic, M. Verrucci, Org. Lett. 2003,
5, 427–429; d) C. Bolm, M. Verrucci, O. Simic, P. G. Cozzi, G.
Raabe, H. Okamura, Chem. Commun. 2003, 2816–2817; e) C.
Bolm, M. Martin, G. Gescheidt, C. Palivan, D. Neshchadin,
H. Bertagnolli, M. P. Feth, A. Schweiger, G. Mitrikas, J.
Harmer, J. Am. Chem. Soc. 2003, 125, 6222–6227; f) M. Harm-
ata, Chemtracts 2003, 16, 660–666.
a) C. R. Johnson, C. W. Schroeck, J. Am. Chem. Soc. 1973, 95,
7418–7423; b) J. Brandt, H. J. Gais, Tetrahedron: Asymmetry
1997, 6, 909–912; c) T. Bach, C. Körber, Eur. J. Org. Chem.
1999, 1033–1039; d) T. Bach, C. Körber, Tetrahedron Lett.
1998, 39, 5015–5016.
Butylphenyl-N-(1,2,4-triazol-4-yl)sulfilimine (6f): Following GP2
using butyl phenyl sulfide and 4-amino-4H-1,2,4-triazole gave 6f
1
(109 mg, 93% yield, 74% conversion) as a yellow-brown solid. H
NMR (400 MHz, CDCl3): δ = 7.83 (s, 2 H), 7.63–7.61 (m, 1 H),
7.58–7.51 (m, 4 H), 3.27–3.20 (m, 1 H), 3.02–2.95 (m, 1 H), 1.88–
1.73 (m, 2 H), 1.61–1.45 (m, 2 H), 0.99 (t, J = 7.2 Hz, 3 H) ppm.
13C NMR (100 MHz, CDCl3): δ = 144.2, 133.0, 130.3, 129.2, 127.6,
45.5, 25.7, 21.7, 13.5 ppm. HRMS (ESI): calcd. for C12H16N4S [M
+ H]+ 249.1174; found 249.1175.
[5]
N-(1,2,4-Triazol)phenyl-(2-nitrophenyl)sulfilimine (6g): Following
GP2 using phenyl (2-nitrophenyl) sulfide and 4-amino-4H-1,2,4-
triazole gave 6g (109 mg, 91% yield, 65% conversion) as a pale-
yellow solid. 1H NMR (400 MHz, [D6]DMSO): δ = 8.78 (d, J =
7.6 Hz, 1 H), 8.48 (s, 1 H), 8.43 (d, J = 8.0 Hz, 1 H), 8.27 (m, 1
H), 7.99 (t, J = 7.8 Hz, 1 H), 7.67 (d, J = 7.2 Hz, 2 H), 7.63–7.56
(m, 3 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 143.7, 142.9,
134.7, 133.7, 130.7, 130.0, 129.7, 129.1, 128.9, 126.6, 124.0 ppm.
HRMS (ESI): calcd. for C14H12N5O2S [M + H]+ 314.0712; found
314.0721.
Methyl 4-[Methyl-N-(4H-1,2,4-triazol-4-yl)sulfinimidoyl]benzoate
(6h): Following GP2 procedure using methyl 4-(methylthio)benzo-
ate and 4-amino-4H-1,2,4-triazole gave 6h (63 mg, 88% yield) as a
1
white solid. H NMR (400 MHz, CDCl3): δ = 8.22 (m, 2 H), 7.82
(s, 2 H), 7.66 (d, J = 8.0 Hz, 2 H), 3.98 (s, 3 H), 2.94 (s, 3 H) ppm.
13C NMR (100 MHz, CDCl3): δ = 165.2, 143.9, 140.4, 134.1, 131.2,
127.2, 52.7, 29.9 ppm. HRMS (ESI): calcd. for C11H13N4OS [M +
H]+ 265.0759; found 265.0755.
[6]
[7]
Phenylpyrimidinyl-N-(1,2,4-triazol-4-yl)sulfilimine (6i): Following
GP2 using pyrimidinyl phenyl sulfoxide and 4-amino-4H-1,2,4-tri-
azole gave 6i (97 mg, 40% yield, 66% conversion) as a pale yellow
solid. 1H NMR (400 MHz, CDCl3): δ = 9.03 (s, 1 H), 8.59 (s, 2 H),
7.46–7.41 (m, 2 H), 7.40–7.35 (m, 5 H) ppm. 13C NMR (100 MHz,
CDCl3): δ = 142.8, 141.9, 135.4, 134.0, 130.4, 130.0, 129.1,
125.0 ppm. HRMS (ESI): calcd. for C12H10N6S [M
271.0766; found 271.0770.
+
H]+
Supporting Information (see footnote on the first page of this arti-
cle): Copies of the NMR spectra, the Cartesian coordinates [Å] and
calculated energies and the thermal corrections to the enthalpy of
the structures optimized at the UB3LYP/6-31+G(d,p) level of
theory.
[8]
[9]
Y. Tamura, H. Matushima, J. Minamikawa, M. Keda, K. Sum-
oto, Tetrahedron 1975, 31, 3035–3040.
a) J. F. K. Müller, P. Vogt, Tetrahedron Lett. 1998, 39, 4805–
4806; b) E. Lacöte, M. Amatore, L. Fensterbank, M. Malacria,
Synlett 2002, 116–118; c) C. Ohta, T. Katsuki, Tetrahedron
Lett. 2001, 42, 3885–3888; d) T. Uchida, Y. Tamura, M. Ohba,
T. Katsuki, Tetrahedron Lett. 2003, 44, 7965–7968; e) H. Oka-
mura, C. Bolm, Org. Lett. 2004, 6, 1305–1307; f) F. Collet,
R. H. Dodd, P. Dauban, Org. Lett. 2008, 10, 5473–5476.
Acknowledgments
This work was financially supported by the National Natural Sci-
ence Foundation of China (NSFC) (grant number 21072131).
Eur. J. Org. Chem. 2012, 1554–1562
© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
1561