ring would be constructed by transition metal-catalyzed
[2 þ 2 þ 2] cyclization of the dialkynylynamide 5. Con-
struction of the ynamide part of 5 could be performed by
CꢀN coupling between bromoalkyne 6and the correspond-
ing nitrogen nucleophile. Furthermore, the bromoalkyne 6
could be easily synthesized from the known optically active
alcohol 711 via CoreyꢀFuchs alkyne synthesis.
Scheme 1. Construction of an Indole Skeleton via [2 þ 2 þ 2]
Cycloaddition of AlkyneꢀAlkyneꢀYnamide
Scheme 2. Retrosynthesis of (ꢀ)-Herbindoles A, B, and C
[2 þ 2 þ 2] cyclization of ynamide-diynes using a transi-
tion metal catalyst. Our retrosynthetic analysis of them is
shown in Scheme 2. All three herbindoles could potentially
be synthesized from the identical cyclopentane-fused indo-
line derivative 4 as a key intermediate, whose aromatic
(5) For reviews on transition-metal-catalyzed [2 þ 2 þ 2] cycloaddi-
tion of three unsaturated bonds, see: (a) Lautens, M.; Klute, W.; Tam,
W. Chem. Rev. 1996, 96, 49. (b) Saito, S.; Yamamoto, Y. Chem. Rev.
ꢀ
2000, 100, 2901. (c) Varela, J. A.; Saa, C. Chem. Rev. 2003, 103, 3787.
(d) Kotha, S.; Brahmachary, E.; Lahiri, K. Eur. J. Org. Chem. 2005,
4741. (e) Chopade, P. R.; Louie, J. Adv. Synth. Catal. 2006, 348, 2307.
(f) Gandon, V.; Aubert, C.; Malacria, M. Chem. Commun. 2006, 2209.
(g) Tanaka, K. Synlett 2007, 1977. (h) Shibata, T.; Tsuchikama, K. Org.
Biomol. Chem. 2008, 6, 1317. (i) Pla-Quintana, A.; Roglans, A. Mole-
cules 2010, 15, 9230. (j) Inglesby, P. A.; Evans, P. A. Chem. Soc. Rev.
Preparation of the bromoalkyne unit is shown in Scheme 3.
First, the known alcohol 7 (97% ee) was transformed into
dibromoalkene 8, from which alkyne formation followed
by deprotection of the TBS group was conducted to give
an alcohol 9. Then dibromoalkene prepared from 9 via
ꢀ
´
nguez, G.; Perez-Castells, J. Chem. Soc. Rev.
2010, 39, 2791. (k) Domı
2011, 40, 3430.
(6) For our reports on transition-metal-catalyzed [2 þ 2 þ 2]
cycloaddition leading to polycyclic compounds including some natural
products, see: (a) Sato, Y.; Nishimata, T.; Mori, M. J. Org. Chem. 1994,
59, 6133. (b) Sato, Y.; Nishimata, T.; Mori, M. Heterocycles 1997, 44,
443. (c) Sato, Y.; Ohashi, K.; Mori, M. Tetrahedron Lett. 1999, 40, 5231.
(d) Sato, Y.; Tamura, T.; Mori, M. Angew. Chem., Int. Ed. 2004, 43,
2436. (e) Sato, Y.; Tamura, T.; Kinbara, A.; Mori, M. Adv. Synth. Catal.
2007, 349, 647. (f) Tanaka, D.; Sato, Y.; Mori, M. J. Am. Chem. Soc.
2007, 129, 7730. (g) Saito, N.; Shiotani, K.; Kinbara, A.; Sato, Y. Chem.
Commun. 2009, 4284. (h) Iwayama, T.; Sato, Y. Chem. Commun. 2009,
5245. (i) Iwayama, T.; Sato, Y. Heterocycles 2010, 80, 917.
Scheme 3. Preparation of Bromoalkyne Part
(7) For reviews on the chemistry of ynamides, see: (a) Zificsak, C. A.;
Mulder, J. A.; Hsung, R. P.; Rameshkumar, C.; Wei, L.-L. Tetrahedron
2001, 57, 7575. (b) Mulder, J. A.; Kurtz, K. C. M.; Hsung, R. P. Synlett
2003, 1379. (c) Hsung, R. P., Ed. In Tetrahedron Symposia-in-Print No.
118, Tetrahedron 2006, 62, 3783. (d) Evano, G.; Coste, A.; Jouvin, K.
Angew. Chem., Int. Ed. 2010, 49, 2840. (e) DeKorver, K. A.; Li, H.;
Lohse, A. G.; Hayashi, R.; Lu, Z.; Zhang, Y.; Hsung, R. P. Chem. Rev.
2010, 110, 5064.
(8) For most recent examples of the preparation and reactions of
ynamides, see: (a) Schotes, C.; Mezzetti, A. Angew. Chem., Int. Ed. 2011,
€
50, 3072. (b) Kramer, S.; Odabachian, Y.; Overgaard, J.; Rottlander,
M.; Gagosz, F.; Skrydstrup, T. Angew. Chem., Int. Ed. 2011, 50, 5090.
(c) Davies, P. W.; Cremonesi, A.; Dumitrescu, L. Angew. Chem., Int. Ed.
2011, 50, 8931. (d) Fadel, A.; Legrand, F.; Evano, G.; Rabasso, N. Adv.
Synth. Catal. 2011, 353, 263. (e) Davies, P. W.; Cremonesi, A.; Martin,
N. Chem. Commun. 2011, 47, 379. (f) Pizzetti, M.; Russo, A.; Petricci, E.
Chem.;Eur. J. 2011, 17, 4523. (g) Greenaway, R. L.; Campbell, C. D.;
Holton, O. T.; Russell, C. A.; Anderson, E. A. Chem.;Eur. J. 2011, 17,
14366. (h) Shindoh, N.; Takemoto, Y.; Takasu, K. Heterocycles 2011,
82, 1133. (i) Shindoh, N.; Kitaura, K.; Takemoto, Y.; Takasu, K. J. Am.
Chem. Soc. 2011, 133, 8470. (j) Mak, X. Y.; Crombie, A. L.; Danheiser,
R. J. Org. Chem. 2011, 76, 1852. (k) DeKorver, K. A.; Johnson, W. L.;
Zhang, Y.; Hsung, R. P.; Dai, H.; Deng, J.; Lohse, A. G.; Zhang, Y.-S.
J. Org. Chem. 2011, 76, 5092. (l) Lu, Z.; Kong, W.; Yuan, Z.; Zhao, X.;
Zhu, G. J. Org. Chem. 2011, 76, 8524. (m) Xu, C.-F.; Xu, M.; Jia, Y.-X.;
Li, C.-Y. Org. Lett. 2011, 13, 1556. (n) Kramer, S.; Friis, S. D.; Xin, Z.;
Odabachian, Y.; Skrydstrup, T. Org. Lett. 2011, 13, 1750. (o) DeKorver,
K. A.; Walton, M. C.; North, T. D.; Hsung, R. P. Org. Lett. 2011, 13,
4862. (p) Wang, Y.-P.; Danheiser, R. L. Tetrahedron Lett. 2011, 52, 2111.
(9) For our reports on transition metal catalysis utilizing ynamide as
a platform, see: (a) Saito, N.; Sato, Y.; Mori, M. Org. Lett. 2002, 4, 803.
(b) Mori, M.; Wakamatsu, H.; Saito, N.; Sato, Y.; Narita, R.; Sato, Y.;
Fujita, R. Tetrahedron 2006, 62, 3872. (c) Saito, N.; Katayama, T.; Sato,
Y. Org. Lett. 2008, 10, 3829. (d) Saito, N.; Katayama, T.; Sato, Y.
Heterocycles 2011, 82, 1181. (e) Saito, N.; Saito, K.; Shiro, M.; Sato, Y.
Org. Lett. 2011, 13, 2718.
(10) For examples of transition-metal-catalyzed [2 þ 2 þ 2] cycload-
dition of alkyneꢀalkyneꢀynamide leading to an indole skeleton, see:
(a) Witulski, B.; Stengel, T. Angew. Chem., Int. Ed. 1999, 38, 2426.
ꢀ
ꢀ
(b) Witulski, B.; Stengel, T.; Fernandez-Hernandez, J. M. Chem. Commun.
2000, 1965. (c) Witulski, B.; Alayrac, C. Angew. Chem., Int. Ed. 2002, 41,
3281. For related transition-metal-catalyzed [2 þ 2 þ 2] cycloaddition of
alkyneꢀnitrileꢀynamide leading to hetroaromatic comounds, see:
(d) Alayrac, C.; Schollmeyer, D.; Witulski, B. Chem. Commun. 2009, 1464.
(e) Garcia, P.; Moulin, S.; Miclo, Y.; Leboeuf, D.; Gandon, V.; Aubert,
C.; Malacria, M. Chem.;Eur. J. 2009, 15, 2129. (f) Nissen, F.; Detert,
H. Eur. J. Org. Chem. 2011, 2845. (g) Nissen, F.; Richard, V.; Alayrac,
C.; Witulski, B. Chem. Commun. 2011, 47, 6656. (h) Garcia, P.; Evanno,
Y.; George, P.; Sevrin, M.; Ricci, G.; Malacria, M.; Aubert, C.; Gandon,
V. Org. Lett. 2011, 13, 2030.
ꢁ
(q) Balieu, S; Toutah, K.; Carro, L.; Chamoreau, L.-M.; Rousseliere, H.;
Courillon, C. Tetrahedron Lett. 2011, 52, 2876. (r) Dateer, R. B.; Shaibu,
B. S.; Liu, R.-S. Angew. Chem., Int. Ed. 2012, 51, 113. (s) Smith, D. L.;
Goundry, W. R. F.; Lam, H. W. Chem. Commun. 2012, 48, 1505.
(t) Jouvin, K.; Heimburger, J.; Evano, G. Chem. Sci. 2012, 3, 756.
(u) Schotes, C.; Althaus, M.; Aardoom, R.; Mezzetti, A. J. Am. Chem.
Soc. 2012, 134, 1331.
€
(11) Prusov, E.; Rohm, H.; Maier, M. E. Org. Lett. 2006, 8, 1025.
Org. Lett., Vol. 14, No. 7, 2012
1915