strategy via a N-pyridinium imidate.6 In their paper,
quinolizidine ring formation, dearomatization of pyridine,
and CÀC bond formation were accomplished in one pot.
Although dearomatization strategies are powerful, they
would be difficult to apply to substrates with carbonyl
functionalities because they require strong nucleophiles
such as Grignard reagents. We therefore focused on
reducing reagents as mild nucleophiles. If the quinolizidine
skeleton is constructed by one-pot activationÀreduction
via an unstable pyridinium cation, this synthetic strategy
can be applied to a broader range of substrates. Using
pyridine instead of piperidine would make the synthesis
simple and free from protecting groups.7 In this paper, we
report a new strategy for the synthesis, without protecting
groups, of quinolizidine skeletons via reduction of acyl-
pyridinium cations and its application to total syntheses of
related natural products.
reduction of alkoxycarbonylpyridinium cation 5 and al-
kylpyridinium cation 6;3,5,11À14 Charette et al. focused on
nucleophilic addition to N-pyridinium imidates.15 How-
ever, there have been few reports of reduction of acylpyr-
idinium cation 4.16 Also, the reported yields were often
low, and specific functional groups were required because
the lability of 4, unlike 5 and 6, would hamper reduction
under these conditions. To realize our strategy, we needed
mild reducing agents.
Scheme 1. Synthetic Strategy for Highly Oxidized Quinolizi-
dines
For the initial survey, a model compound717 was usedto
examine reductive cyclization using an activator and a
reductant (Table 1). After treatment of 7 with oxalyl
chloride and a catalytic amount of DMF, we tried several
reagents for reduction of the resultant acylpyridinium
intermediate 8. Reduction using NaBH4, LiBH4, DIBAL-
H, and Et3SiH did not proceed and only the starting
Figure 1. Quinolizidine alkaloids.
We devised a synthesis of quinolizidine 3, bearing in
mind natural products with carbonyl functionalities and
carbon side chains, for example A58365B8 and GB179
(Figure 1, Scheme 1). Because 3 contains amide and ketone
groups, it would also be a useful intermediate for substi-
tuted quinolizidine derivatives such as quinolizidine
207I.10 The quinolizidine skeleton could be constructed
by reduction of acylpyridinium cation 2, which is obtained
by activation of carboxylic acid 1, as shown in Scheme 1.
There are many examples of nucleophilic addition and
carboxylic acid was recovered. In the case of BH3 THF
3
and Bu3SnH, 9b was obtained via 1,2-reduction (Table 1,
entries 1 and 2). In contrast, the reaction using Comins’
conditions16a gave 1,2-dihydropyridine as a 1:0.7 mixture
of isomers 9c (entry 3). When a Hantzsch ester 1018,19 was
(13) For recent examples of reduction of alkoxy carbonylpyridinium
cation 5 and alkyl pyridinium cation 6, see: (a) Donohoe, T. J.;
Connolly, M.; Rathi, A. H.; Walton, L. Org. Lett. 2011, 13, 2074.
(b) Shaw, A. P.; Ryland, B. L.; Franklin, M. J.; Norton, J. R.; Chen,
J. Y.-C.; Hall, M. L. J. Org. Chem. 2008, 73, 9668. (c) Donohoe, T. J.;
Johnson, D. J.; Mace, L. H.; Bamford, M. J.; Ichihara, O. Org. Lett.
2005, 7, 435.
(14) For related examples of nucleophilic addition and reduction of
other pyridinium cations, see: (a) Gutsulyak, D. V.; van der Est, A.;
Nikonov, G. I. Angew. Chem., Int. Ed. 2011, 50, 1384. (b) Legault, C. Y.;
Charette, A. B. J. Am. Chem. Soc. 2005, 127, 8966. (c) Legault, C.;
Charette, A. B. J. Am, Chem. Soc. 2003, 125, 6360.
(15) (a) Charette, A. B.; Grenon, M.; Lemire, A.; Pourashraf, M.;
Martel, J. J. Am. Chem. Soc. 2001, 123, 11829. (b) Alexandre, L.;
Charette, A. B. Org. Lett. 2005, 7, 2747. (c) Charette, A. B.; Mathieu,
S.; Martel, J. Org. Lett. 2005, 7, 5401. (d) Focken, T.; Charette, A. B.
Org. Lett. 2006, 8, 2985.
(6) Barbe, G.; Pelletier, G.; Charett, A. B. Org. Lett. 2009, 11, 3398.
(7) (a) Young, I. S.; Baran, P. S. Nat. Chem. 2009, 1, 193. (b)
Hoffmann, R. W. Synthesis 2006, 3531.
(8) (a) Mynderse, J. S.; Samlaska, S. K.; Fukuda, D. S.; Du Bus,
R. H.; Baker, P. J. J. Antibiot. 1985, 38, 1003. (b) Hunt, A. H.; Mynderse,
J. S.; Samlaska, S. K.; Fukuda, D. S.; Maciak, G. M.; Kirst, H. A.;
Occolowitz, J. L.; Swartzendruber, J. K.; Jones, N. D. J. Antibiot. 1988,
41, 771.
(9) Mander, L. N.; Willis, A. C.; Herlt, A. J.; Taylor, W. C. Tetra-
hedron Lett. 2009, 50, 7089.
(10) Proposed structure: (a) Jain, P.; Garraffo, H. M.; Yeh, H. J. C.;
Spande, T. F.; Daly, J. W. J. Nat. Prod. 1996, 59, 1174. (b) Revised
structure: Toyooka, N.; Tanaka, K.; Momose, T.; Daly, J. W.; Garraffo,
M. Tetrahedron 1997, 53, 9553.
(16) (a) Comins, D. L.; Abdullah, A. H. J. Org. Chem. 1984, 49, 3392.
(b) Obika, S.; Nishiyama, S.; Tatematsu, S.; Nishimoto, M.; Miyashita,
K.; Imanishi, T. Heterocycles 1997, 44, 537. (c) Schroif-Gregoire, C.;
Travert, N.; Zaparucha, A.; Al-Mourabit, A. Org. Lett. 2006, 8, 2961.
(17) Compound 7 was prepared from methyl picolinate by modifying
our previous report: Tsukano, C.; Zhao, L.; Takemoto, Y.; Hirama, M.
Eur. J. Org. Chem. 2010, 4198. Also see Supporting Information.
(18) Hantzsch, A. Justus Liebigs Ann. Chem 1882, 215, 1.
(19) For selected recent examples, see: (a) Barbe, G.; Charette, A. B.
J. Am. Chem. Soc. 2008, 130, 18. (b) Pelletier, G.; Bechara, W. S.;
Charette, A. B. J. Am. Chem. Soc. 2010, 132, 12817. (c) Li, L.; Chua,
K. W. S. Tetrahedron Lett. 2011, 52, 1392.
(11) For selected reviews, see: (a) Bull, J. A.; Mousseau, J. J.;
Pelletier, G.; Charette, A. B. Chem. Rev. 2012DOI: 10.1021/cr200251d.
(b) Poddubnyi, I. S. Chem. Heterocycl. Compd. 1995, 31, 682. (c) Stout,
D. M.; Meyers, A. I. Chem. Rev. 1982, 82, 223.
(12) For recent examples of nucleophilic addition to pyridinium
cation, see: (a) Nadeau, C.; Aly, S.; Belyk, K. J. Am. Chem. Soc.
2011, 133, 2878. (b) Wolfe, B. H.; Libby, A. H.; Al-awar, R. S.; Foti,
C. J.; Comins, D. L. J. Org. Chem. 2010, 75, 8564. (c) Fernandex-
Izbanez, M. A.; Macia, B.; Pizzuti, M. G.; Minnaard, A. J.; Feringa,
B. L. Angew. Chem., Int. Ed. 2009, 48, 9339. (d) Donohoe, T. J.;
Connolly, M. J.; Walton, L. Org. Lett. 2009, 11, 5562. (e) Arnott, G.;
Brice, H.; Clayden, J.; Blaney, E. Org. Lett. 2008, 10, 3089.
Org. Lett., Vol. 14, No. 7, 2012
1903