472
J. Zhang et al.
LETTER
(3) For VMA reactions, see: (a) Shinoyama, M.; Shirokawa, S.-
i.; Nakazaki, A.; Kobayashi, S. Org. Lett. 2009, 11, 1277.
(b) Shirokawa, S.-i.; Kamiyama, M.; Nakamura, T.; Okada,
M.; Nakazaki, A.; Hosokawa, S.; Kobayashi, S. J. Am.
Chem. Soc. 2004, 126, 13604. (c) Ehrlich, G.; Hassfeld, J.;
Eggert, U.; Kalesse, M. Chem. Eur. J. 2008, 14, 2232.
(d) Hassfeld, J.; Kalesse, M. Tetrahedron Lett. 2002, 43,
5093. (e) Bhatt, U.; Christmann, M.; Quitschalle, M.; Claus,
E.; Kalesse, M. J. Org. Chem. 2001, 66, 1885. (f) Hassfeld,
J.; Christmann, M.; Kalesse, M. Org. Lett. 2001, 3, 3561.
(g) Christmann, M.; Bhatt, U.; Quitschalle, M.; Claus, E.;
Kalesse, M. Angew. Chem. Int. Ed. 2000, 39, 4364.
(h) Perreault, S.; Spino, C. Org. Lett. 2006, 8, 4385.
(i) Eissler, S.; Nahrwold, M.; Neumann, B.; Stammler, H.-
G.; Sewald, N. Org. Lett. 2007, 9, 817. (j) Zou, B.; Long,
K.; Ma, D. Org. Lett. 2005, 7, 4237. (k) Suenaga, K.;
Mutou, T.; Shibata, T.; Itoh, T.; Fujita, T.; Takada, N.;
Hayamizu, K.; Takagi, M.; Irifune, T.; Kigoshi, H.; Yamada,
K. Tetrahedron 2004, 60, 8509. (l) Hassfeld, J.; Kalesse, M.
Synlett 2002, 2007.
is carried out under mild conditions, and the operation is
simple and practical. This unprecedented chemical trans-
formation affords highly functionalized homoallylic alco-
hols having two stereocenters at the g- and d-positions
with a high diastereomeric ratio, which can be easily
transformed into other useful building blocks and are also
synthetically attractive in biological active molecules.
Current efforts focus on expanding the scope of the viny-
logous donors and acceptors as well as exploring the ap-
plications of the homoallylic alcohols in organic
synthesis, and the results will be reported in due course.
Supporting Information for this article is available online at
experimental procedures, analysis of NMR spectra of homoallylic
alcohols 3, and crystal data for compound syn-3aa.
(4) For direct VA reactions, see: (a) Bella, M.; Piancatelli, G.;
Squarcia, A.; Trolli, C. Tetrahedron Lett. 2000, 41, 3669.
(b) Bella, M.; Piancatelli, G.; Squarcia, A. Tetrahedron
2001, 57, 4429. (c) Sarma, K. D.; Zhang, J.; Curran, T. T.
J. Org. Chem. 2007, 72, 3311.
(5) For asymmetric direct VA reactions, see: (a) Yang, Y.;
Zheng, K.; Zhao, J.; Lin, L.; Liu, X.; Feng, X. J. Org. Chem.
2010, 75, 5382. (b) Ube, H.; Shimada, N.; Terada, M.
Angew. Chem. Int. Ed. 2010, 49, 1858. (c) Luo, J.; Wang,
H.; Han, X.; Xu, L.-W.; Kwiatkowski, J.; Huang, K.-W.; Lu,
Y. Angew. Chem. Int. Ed. 2011, 50, 1861. (d) Pansare, S.
V.; Paul, E. K. Chem. Commun. 2011, 47, 1027.
Acknowledgment
Financial support from National Natural Science Foundation of
China (No. 21172082) and characterization of the new compounds
for the Center of Analysis and Testing of Huazhong University of
Science and Technology is gratefully acknowledged.
References and Notes
(1) For VA reaction in synthesis of natural products and
biologically active compounds, see: (a) Abramite, J. A.;
Sammakia, T. Org. Lett. 2007, 9, 2103. (b) Jahn, U.; Dinca,
E. Chem. Eur. J. 2009, 15, 58. (c) Miesch, L.; Rietsch, V.;
Welsch, T.; Miesch, M. Tetrahedron Lett. 2008, 49, 5053.
(d) Vaz, B.; Alvarez, R.; Brückner, R.; De Lera, A. R. Org.
Lett. 2005, 7, 545. (e) Wu, T. J.; Huang, P. Q. Tetrahedron
Lett. 2008, 49, 383. (f) Liu, G.; Wu, T. J.; Ruan, Y. P.;
Huang, P. Q. Chem. Eur. J. 2010, 16, 5755. (g) Hunter, R.;
Rees-Jones, S. C. M.; Su, H. Tetrahedron Lett. 2007, 48,
2819. (h) Nomiya, M.; Murakami, T.; Noboru, T.; Okuno,
T.; Harada, Y.; Hashimoto, M. J. Org. Chem. 2008, 73,
5039. (i) Teixeira, R. R.; Barbosa, L. C. A.; Santana, J. O.;
Veloso, D. P.; Ellena, J.; Doriguetto, A. C.; Drew, M. G. B.;
Ismail, F. M. D. J. Mol. Struct. 2007, 837, 197. (j) Barbosa,
L. C. A.; Rocha, M. E.; Teixeira, R. R.; Maltha, C. R. A.;
Forlani, G. J. Agric. Food. Chem. 2007, 55, 8562.
(6) Adamo, M. F. A.; Suresh, S. Tetrahedron 2009, 65, 990.
(7) (a) Aponte, J. C.; Hammond, G. B.; Xu, B. J. Org. Chem.
2009, 74, 4623. (b) Xu, B.; Hammond, G. B. Angew. Chem.
Int. Ed. 2008, 47, 689.
(8) Lautens, M.; Han, W.; Liu, J. H.-C. J. Am. Chem. Soc. 2003,
125, 4028.
(9) (a) Liu, K.; Chougnet, A.; Woggon, W.-D. Angew. Chew.
Int. Ed. 2008, 47, 5827. (b) Lesch, B.; Toräng, J.;
Vanderheiden, S.; Bräse, S. Adv. Synth. Catal. 2005, 347,
555. (c) Volz, N.; Bröhmer, M. C.; Nieger, M.; Bräse, S.
Synlett 2009, 550.
(10) (a) Saito, S.; Shiozawa, M.; Ito, M.; Yamamoto, H. J. Am.
Chem. Soc. 1998, 120, 813. (b) Saito, S.; Nagahara, T.;
Shiozawa, M.; Nakadai, M.; Yamamoto, H. J. Am. Chem.
Soc. 2003, 125, 6200.
(11) Zhang, J.-L.; Gong, Y.-F. Org. Lett. 2011, 13, 176.
(12) CCDC 825960 contains the supplementary crystallographic
data for this paper. These data can be obtained free of charge
from The Cambridge Crystallographic Data Center via
(13) (a) Hawkinson, D. C.; Wang, Y. J. Org. Chem. 2007, 72,
3592. (b) Whalen, D. L.; Weimaster, J. F.; Ross, A. M.;
Radhe, R. J. Am. Chem. Soc. 1976, 98, 7319.
(k) Boukouvalas, J.; McCann, L. C. Tetrahedron Lett. 2010,
51, 4636. (l) Paterson, I.; Davies, R. D. M.; Marquez, R.
Angew. Chem. Int. Ed. 2001, 40, 603. (m) Tiseni, P. S.;
Peters, R. Org. Lett. 2008, 10, 2019.
(2) For reviews of VA reaction, see: (a) Casiraghi, G.; Zanardi,
F.; Appendino, G.; Rassu, G. Chem. Rev. 2000, 100, 1929.
(b) Denmark, S. E.; Heemstra, J. R. Jr.; Beutner, G. L.
Angew. Chem. Int. Ed. 2005, 44, 4682. (c) Kalesse, M. Top.
Curr. Chem. 2005, 244, 43. (d) Casiraghi, G.; Battistini, L.;
Curti, C.; Rassu, G.; Zanardi, F. Chem. Rev. 2011, 111,
3076.
Synlett 2012, 23, 468–472
© Thieme Stuttgart · New York