6030.7(4) Å3, T = 200 K, space group Pca21, Z = 4, reflections
collected/unique 91 642/7330 (Rint = 0.0584). The final wR2 was
0.1277 (all data).
Crystal data C48H55AgF3N3O3S(C4H6)1.5 (3c). Mr = 1000.01,
monoclinic, a = 32.106(3), b = 20.658(2), c = 19.954(2) Å, β =
118.949(5)°, V = 11 581(2) Å3, T = 200 K, space group C2/c,
Z = 8, reflections collected/unique 94 508/14 448 (Rint = 0.0382).
The final wR2 was 0.1600 (all data).
Rev., 2008, 108, 3379; (c) Z. Li, D. A. Capretto, R. Rahaman and C. He,
Angew. Chem., Int. Ed., 2007, 46, 5184.
5 Recent minireview of pyridine-derived tridentate pioncer ligands.
J. I. van der Vlugt and J. N. H. Reek, Angew. Chem., Int. Ed., 2009, 48,
8832.
6 Anionic and neutral pincer ligands of Ag(I) and Au(I) are reported but
they do not display pincer geometries. For Ag(I) examples see:
(a) A. Fraix, M. Lutz, A. L. Spek, R. J. M. Klein Gebbink, G. van Koten,
J.-Y. Salaün and P.-A. Jaffrè, Dalton Trans., 2010, 39, 2942; (b) J. I. van
der Vlugt, M. A. Siegler, M. Janssen, D. Vogt and A. L. Spek, Organo-
metallics, 2009, 28, 7025; (c) J. C. DeMott, F. Basuli, U. J. Kilgore,
B. M. Foxman, J. C. Huffman, O. V. Ozerov and D. J. Mindiola, Inorg.
Chem., 2007, 46, 6271; (d) F. Camso, M. Camalli, H. Rimml and
L. M. Venanzi, Inorg. Chem., 1995, 34, 673; For examples of Au(I) see:
(e) M. Contel, M. Stol, M. A. Casado, G. P. M. van Klink, D. D. Ellis, A.
L. Spek and G. van Koten, Organometallics, 2002, 21, 4556;
(f) M. Contel, D. Nobel, A. L. Spek and G. van Koten, Organometallics,
2000, 19, 3288; (g) S.-J. Shieh, X. Hong, S.-M. Peng and C.-M. Che,
J. Chem. Soc., Dalton Trans., 1994, 3067.
7 Two bis(pyrazolyl)pyridine Ag complexes with pincer geometries are
reported. Y. Zhou, W. Chen and D. Wang, Dalton Trans., 2008, 1444.
8 P. Pérez-Galán, N. Delpont, E. Herrero-Gómez, F. Maseras and
A. M. Echavarren, Chem.–Eur. J., 2010, 16, 5324 and references therein.
9 A. V. Vasilyev, S. V. Lindeman and J. K. Kochi, Chem. Commun., 2001,
909.
Computational details
DFT calculations have been performed using the Gaussian 03
package.16 Wave function stability calculations were performed
to confirm that the calculated wave functions corresponded to
the electronic ground state. The structures of all species were
optimized using the B3LYP exchange-correlation (XC) func-
tional with the mixed basis set (DZVP on Ag and TZVP on all
other atoms). Tight SCF convergence criteria (10−8 a.u.) were
used for all calculations. Harmonic frequency calculations with
the analytic evaluation of force gradients were used to determine
the nature of the stationary points. The analysis of the molecular
orbital (MO) compositions in terms of occupied and unoccupied
orbitals of the fragment species (HOFOs and LUFOs, respect-
ively), the construction of the MO diagram and Mayer bond
orders were calculated using the AOMix program.17,18 Atomic
charges and Wiberg bond orders in the natural atomic orbital
basis were evaluated by using the natural population analysis.19
Frequency calculations of the optimized structures provided
zero-point corrections and confirmed that the structures represent
energy minima.
10 NIST Computational Chemistry Comparison and Benchmark Database
NIST Standard Reference Database Number 101 Release 15b, August
2011, Editor: Russell D. Johnson III, http://cccbdb.nist.gov/.
11 H. V. R. Dias, J. A. Flores, J. Wu and P. Kroll, J. Am. Chem. Soc., 2009,
131, 11249.
12 W. J. Evans, D. G. Giarikos, D. Josell and J. W. Ziller, Inorg. Chem.,
2003, 42, 8255.
13 H. V. R. Dias, Z. Wang and W. Jin, Inorg. Chem., 1997, 36, 6205.
14 V. V. Bashilov, P. V. Petrovsky, V. I. Sokolov, F. M. Dolgushin,
A. I. Yanovsky and Y. T. Struchkov, Russ. Chem. Bull., 1996, 45, 1207.
15 T. Jurca, K. Dawson, I. Mallov, T. Burchell, G. P. A. Yap and
D. S. Richeson, Dalton Trans., 2010, 39, 1266–1272.
16 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb,
J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson,
H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov,
J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota,
R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao,
H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro,
M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov,
R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant,
S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene,
J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts,
R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli,
J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski,
G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels,
Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox,
Gaussian 09, Revision A.1, Gaussian, Inc., Wallingford CT, 2009.
17 S. I. Gorelsky, version 6.36 ed., University of Ottawa, Ottawa, Canada,
2007
Notes and references
1 For selected examples see: (a) V. C. Gibson, C. Redshaw and G.
A. Solan, Chem. Rev., 2007, 107, 1745–1776; (b) S. D. Ittel, L.
K. Johnson and M. Brookhart, Chem. Rev., 2000, 100, 1169.
2 N. Kleigrewe, W. Steffen, T. Blömker, G. Kehr, R. Fröhlich,
B. Wibbeling, G. Erker, J.-C. Wasilke, G. Wu and G. C. Bazan, J. Am.
Chem. Soc., 2005, 127, 13955.
3 (a) T. Jurca, S. I. Gorelsky, I. Korobkov and D. S. Richeson, Dalton
Trans., 2011, 40, 4394; (b) T. Jurca, I. Korobkov, G. P. A. Yap,
S. I. Gorelsky and D. S. Richeson, Inorg. Chem., 2010, 49, 10635;
(c) T. Jurca, K. Dawson, I. Mallov, T. Burchell, G. P. A. Yap and
D. S. Richeson, Dalton Trans., 2010, 39, 1266; (d) T. Jurca, J. Lummis,
T. J. Burchell, S. I. Gorlesky and D. S. Richeson, J. Am. Chem. Soc.,
2009, 131, 4608.
18 S. I. Gorelsky and A. B. P. Lever, J. Organomet. Chem., 2001, 635, 187–
196.
19 A. E. Reed, R. B. Weinstock and F. Weinhold, J. Chem. Phys., 1985, 83,
735–746.
4 Selected recent examples: (a) P. Belmont and E. Parker, Eur. J. Org.
Chem., 2009, 6075; (b) M. Mar Díaz-Requejo and P. J. Pérez, Chem.
This journal is © The Royal Society of Chemistry 2012
Dalton Trans., 2012, 41, 4765–4771 | 4771