be correlated with the stability and instability of the corresponding
adducts, f and AL could help to find a correlation between the
reactivity and biological activity of styrene oxides.
correlating the chemical reactivity and mutagenicity of styrene
oxides.
(v) A pNSO-guanosine adduct was detected.
The mutagenicity shown by BPL > pNSO > SO could be
explained in these terms (Table 6). The higher the ratio and stability
of the adduct formed, the higher the mutagenicity.
Acknowledgements
We thank the Spanish Ministerio de Ciencia e Innovacio´n and
Fondos FEDER (Project CTQ2010-18999) for supporting the
research reported in this article. M.G.P. thanks the Junta de
Castilla y Leo´n for Ph. D. grant. R.G.B. thanks the Spanish
Ministerio de Educacio´n, and I.F.C. the Spanish Ministerio de
Asuntos Exteriores y de Cooperacio´n (MAEC-AECI Grant) for
PhD grants.
Final remarks: pNSO-guanosine adduct formation
Since, stated above, NBP is a model nucleophile for the N7 position
of guanine in DNA,42–45 the efficiency of pNSO as an alkylating
agent of NBP has been investigated,46 the last step of the present
work was to check the pNSO alkylating capacity on a biomimetic
substrate such as the guanosine molecule (Guo). This is in contrast
with a previous work,15 in which no evidence of its formation
was found. The mass spectra of the aliquots eluted at a retention
time of 8.83 min revealed the formation of a pNSO-guanosine
adduct in the reaction of guanosine and pNSO (Fig. 6). This is in
contrast with the results from earlier work,15 in which no evidence
of its formation was found. Currently, experiments to investigate
in depth the formation mechanism of the pNSO-Guo adduct are
being carried out.
Notes and references
1 Solladie´-Cavallo and A. Diep-Vohuule, J. Org. Chem., 1995, 60, 3494.
2 K. Hattori, M. Nagano, T. Kato, I. Nakanishi, I. Keisuke, T. Kinoshita
and K. Sakane, Bioorg. Med. Chem. Lett., 1995, 5, 2821.
3 R. Di Phabio, C. Pietra, R. J. Thomas and L. Ziviani, Bioorg. Med.
Chem. Lett., 1995, 5, 551.
4 R. K. Atkins, J. Frazier, L. L. Moore and L. O. Weigel, Tetrahedron
Lett., 1986, 27, 2451.
5 S. Pedragosa-Moreau, C. Morisseau, J. Baratti, J. Zylber, A. Archelas
and R. Furstoss, Tetrahedron, 1997, 53, 9707.
6 S. Pedragosa-Moreau, J. Morisseau, J. Zylber, A. Archelas and R.
Furstoss, J. Org. Chem., 1996, 61, 7402.
7 N. Bala and S. S. Chimni, Tetrahedron: Asymmetry, 2010, 21, 2879.
8 H. Nellaiah, C. Morisseau, A. Archelas, R. Furstoss and J. C. Baratti,
Biotechnol. Bioeng., 1996, 49, 70.
9 A. O. Kas’yan, E. A. Golodaeva, A. V. Tsygankov, L. I. Kas’yan and
Russ, J. Org. Chem., 2002, 38, 1606.
10 R. B. Westkaemper and R. P. Hanzlik, Anal. Biochem., 1980, 102, 63.
11 R. B. Westkaemper and R. P. Hanzlik, Arch. Biochem. Biophys., 1981,
208, 195.
12 P. Moussou, A. Archelas, J. Baratti and R. Furstoss, J. Org. Chem.,
1998, 63, 3532.
13 C. A. Yeates, M. S. van Dyk, A. L. Botes, J. C. Breytenbach and H. M.
Krieg, Biotechnol. Lett., 2003, 25, 675.
Fig. 6 Mass spectra of the peak with tR = 8.83 min from the chromatogram
of pNSO and the guanosine reaction mixture.
14 N. Tamura, K. Takahashi, N. Shirai and Y. Kawazoe, Chem Pharm.
Bull., 1982, 30, 1393.
15 K. Hemminki, T. Heinonen and H. Vainio, Arch. Toxicol., 1981, 49,
Conclusions
35.
16 K. Sugiura, T. Kimura and M. Goto, Mutat. Res., Genet. Toxicol.,
1978, 58, 159.
17 Y. Kawazoe, N. Tamura and T. Yoshimura, Chem. Pharm. Bull., 1982,
30, 2077.
18 M. M. Kayser and P. Morand, Can. J. Chem., 1980, 58, 302.
19 R. E. Parker and N. S. Isaacs, Chem. Rev., 1959, 59, 737.
20 R. M. Laird and R. E. Parker, J. Am. Chem. Soc., 1961, 83, 4277.
21 J. J. Blummenstein, V. C. Ukachukwu, R. S. Mohan and D. L. Whalen,
J. Org. Chem., 1993, 58, 924.
22 T. M. Santosusso and D. Swern, J. Org. Chem., 1975, 40, 2764.
23 C. O. Guss and H. G. Mautner, J. Org. Chem., 1951, 16, 887.
24 J. Casado, M. A. Lo´pez-Quintela and F. M. Lorenzo-Barral, J. Chem.
Educ., 1986, 63, 450.
25 A. L. Mori and L. L. Schaleger, J. Am. Chem. Soc., 1972, 94, 5039.
26 J. Koskikallio and E. Whalley, Can. J. Chem., 1959, 37, 783.
27 R. Go´mez-Bombarelli, M. Gonza´lez-Pe´rez, M. T. Pe´rez Prior, J. A.
Manso, E. Calle and J. Casado, Chem. Res. Toxicol., 2008, 21, 1964.
28 V. Gold, Advances in physical organic chemistry (Elsevier, New York,
1963).
29 G. Akerlof and O. A. Sort, J. Am. Chem. Soc., 1936, 58, 1241.
30 F. Latif, R. C. Moschel, K. Hemminki and A. Dipple, Chem. Res.
Toxicol., 1988, 1, 364.
31 W. Pauwels and H. Veulemans, Mutat. Res., Genet. Toxicol. Environ.
Mutagen., 1998, 418, 21.
32 L. Ehrenberg and S. Hussain, Mutat. Res., Rev. Genet. Toxicol., 1981,
86, 1.
(i) pNSO alkylates 4-(p-nitrobenzyl)pyridine (NBP), a model
molecule of the N7 position of guanine in DNA, through an SN2
mechanism to form the b-NBP-pNSO adduct (AD).
(ii) To study alkylating effectiveness, three reactions must be
taken into account: a) The alkylation reaction itself; b) the pNSO
hydrolysis reaction, which also occurs through an SN2 mechanism,
and c) the pNSO-NBP adduct hydrolysis reaction.
(iii) pNSO is a strong alkylating agent but with low effectiveness.
The alkylating capacity of pNSO, defined as the fraction of initial
alkylating agent that forms the adduct, is similar to that of
mutagenic agents as effective as b-propiolactone. The instability of
the b-adduct formed that reduces its effectiveness could account
for the low mutagenicity of pNSO in comparison with that seen
for the lactone.
(iv) The different stabilities of the a and b-adducts formed
between NBP and styrene oxides show that the alkylating ca-
pacity, f = kalk[NBP]/(kalk[NBP]+ khyd ), as well as the alkylating
AD
hyd
AD
hyd
effectiveness, AL = f /k (kalk, khyd and k being the alkylation
rate constant, the pNSO hydrolysis rate constant, and the NBP-
pNSO adduct hydrolysis rate constant) are useful tools for
This journal is
The Royal Society of Chemistry 2011
Org. Biomol. Chem., 2011, 9, 7016–7022 | 7021
©