Table 2 Asymmetric synthesis of b-trifluoromethylated pyrroline 3
5 (a) S. C. Stinson, Chem. Eng. News, 2000, 78, 55; (b) S. C. Stinson,
Chem. Eng. News, 2001, 79, 79; (c) L. A. Nguyen, H. He and
C. Pham-Huy, Int. J. Biomed. Sci., 2006, 2, 85.
6 K. Matoba, H. Kawai, T. Furukawa, A. Kusuda, E. Tokunaga,
S. Nakamura, M. Shiro and N. Shibata, Angew. Chem., Int. Ed.,
2010, 49, 5762.
7 H. Kawai, K. Tachi, E. Tokunaga, M. Shiro and N. Shibata,
Angew. Chem., Int. Ed., 2011, 50, 7803.
8 (a) N. Shibata, H. Fujimoto, S. Mizuta, S. Ogawa, Y. Ishiuchi,
S. Nakamura and T. Toru, Synlett, 2006, 3484; (b) S. Ogawa,
N. Iida, E. Tokunaga, M. Shiro and N. Shibata, Chem.–Eur. J.,
2010, 16, 7090; (c) S. Ogawa, T. Nishimine, E. Tokunaga and
N. Shibata, Synthesis, 2010, 3274; (d) Y. Huang, E. Tokunaga,
S. Suzuki, M. Shiro and N. Shibata, Org. Lett., 2010, 12, 1136.
9 (a) T. Konno, T. Tanaka, T. Miyabe, A. Morigaki and T. Ishihara,
Tetrahedron Lett., 2008, 49, 2106; (b) G. Blay, I. Fernandez,
M. C. Munoz, J. R. Pedro and C. Vila, Chem.–Eur. J., 2010,
16, 9117; (c) W. Wang, X. Lian, D. Chen, X. Liu, L. Lin and
X. Feng, Chem. Commun., 2011, 47, 7821.
Entrya
4
Ar
3
Time/h Yieldb (%) dr
eec (%)
1
2
3
4
5
6
7
8
9
10
4a Ph
4c 3-MeC6H4
4d 4-MeC6H4
4e 3-MeOC6H4 3e 36
4f 4-MeOC6H4 3f 12
4g 4-FC6H4
4h 4-ClC6H4
4i 4-BrC6H4
4j 2-Naphthyl 3j 14
4k 2-Furanyl 3k 16
3b
3c 36
3d 12
9
95
72
95
74
94
94
93
96
81
96
98 : 2 86
99 : 1 84
99 : 1 87
98 : 2 84
99 : 1 88
99 : 1 84
99 : 1 78
99 : 1 77
98 : 2 72
99 : 1 80
3g 15
3h 15
3i 15
10 O. Marrec, C. Christophe, T. Billard, B. Langlois, J.-P. Vors and
S. Pazenok, Adv. Synth. Catal., 2010, 352, 2825.
a
11 Review for the reaction of a glycinate Schiff base under phase-
transfer catalysis, see: (a) M. J. O’Donnell, Acc. Chem. Res., 2004,
37, 506; for selected examples, see:; (b) E. J. Corey, M. C. Noe and
F. Xu, Tetrahedron Lett., 1998, 39, 5347; (c) D. Ma and K. Cheng,
Tetrahedron: Asymmetry, 1999, 10, 713; (d) F.-Y. Zhang and
E. J. Corey, Org. Lett., 2000, 2, 1097; (e) T. Ishikawa, Y. Araki,
T. Kumamoto, H. Seki, K. Fukuda and T. Isobe, Chem. Commun.,
2001, 245; (f) M. J. O’Donnell, F. Delgado, E. Domınguez, J. de
Blas and W. L. Scottc, Tetrahedron: Asymmetry, 2001, 12, 821;
(g) S. Arai, R. Tsuji and A. Nishida, Tetrahedron Lett., 2002,
43, 9535; (h) T. Shibuguchi, Y. Fukuta, Y. Akachi, A. Sekine,
T. Ohshima and M. Shibasaki, Tetrahedron Lett., 2002, 43, 9539;
(i) T. Ohshima, T. Shibuguchi, Y. Fukuta and M. Shibasaki,
Tetrahedron, 2004, 60, 7743; (j) T. Ohshima, V. Gnanadesikan,
T. Shibuguchi, Y. Fukuta, T. Nemoto and M. Shibasaki, J. Am.
Chem. Soc., 2003, 125, 11206; (k) S. Arai, K. Tokumaru and
T. Aoyama, Chem. Pharm. Bull., 2004, 52, 646; (l) T. Akiyama,
M. Hara, K. Fuchibe, S. Sakamoto and K. Yamaguchi, Chem.
Commun., 2003, 1734; (m) B. Lygo, B. Allbutt and E. H. M.
Kirton, Tetrahedron Lett., 2005, 46, 4461; (n) S. Arai,
F. Takahashi, R. Tsuji and A. Nishida, Heterocycles, 2006,
67, 495; (o) T. Shibuguchi, H. Mihara, A. Kuramochi,
S. Sakuraba, T. Ohshima and M. Shibasaki, Angew. Chem., Int.
Ed., 2006, 45, 4635; (p) H. Mihara, T. Shibuguchi, A. Kuramochi,
T. Ohshima and M. Shibasaki, Heterocycles, 2007, 72, 421;
(q) S. Saito, T. Tsubogo and S. Kobayashi, J. Am. Chem. Soc.,
2007, 129, 5364; (r) T. Tsubogo, S. Saito, K. Seki, Y. Yamashita and
S. Kobayashi, J. Am. Chem. Soc., 2008, 130, 13321; (s) L. Bernardi,
J. Lopez-Cantarero, B. Niess and K. A. Jørgensen, J. Am. Chem.
Soc., 2007, 129, 5772; (t) A. Ryoda, N. Yajima, T. Haga,
T. Kumamoto, W. Nakanishi, M. Kawahata, K. Yamaguchi and
T. Ishikawa, J. Org. Chem., 2008, 73, 133; (u) P. Elsner, L. Bernardi,
G. D. Salla, J. Overgaard and K. A. Jørgensen, J. Am. Chem. Soc.,
2008, 130, 4897; (v) T. Kano, T. Kumano and K. Maruoka, Org.
Lett., 2009, 11, 2023; (w) G. Zhang, T. Kumamoto, T. Heima and
T. Ishikawa, Tetrahedron Lett., 2010, 51, 3927; (x) M. Strohmeier,
K. Leach and M. A. Zajac, Angew. Chem., Int. Ed., 2011, 50, 12335.
12 (a) S. Kobayashi, T. Tsubogo, S. Saito and Y. Yamashita, Org.
Lett., 2008, 10, 807; (b) T. Ma, X. Fu, C. W. Kee, L. Zong, Y. Pan,
K.-W. Huang and C.-H. Tan, J. Am. Chem. Soc., 2011, 133, 2828.
13 3b was converted into methylester [TfOH (1.0 equiv.), MeOH,
reflux, 48 h, 92%], and the absolute stereochemistry of (2R, 3R)-3
was determined by X-ray analysis (CCDC 866497, Fig. S1, ESIz).
14 I. Kin, G. Ohta, K. Teraishi and K. Watanabe, US 2005065060,
2005.
The reaction of 4 with 5b (1.1 equiv.) was carried out in the presence
of 6e (10 mol%) and Cs2CO3 (5.0 equiv.) in CPME at ꢀ20 1C.
b
c
Isolated yield. ee’s were determined by chiral HPLC.
that the combination of the new bulky adamantyl glycinate
and CPME14 solvent introduced asymmetry into the Billard
chemistry,10 with especially good diastereocontrol. The
adamantyl ester would provide an attractive alternative to
the analogous methyl, tert-butyl, or cumyl esters.15 The use of
CPME should be advantageous for industrial use due to the
high stability, wide liquidity range, low heat of vaporization,
resistance to peroxide formation and narrow explosion area.14
This study was financially supported in part by Grants-in-
Aid for Scientific Research (21390030, 22106515, 23915014,
Project No. 2105: Organic Synthesis Based on Reaction
Integration). We also thank the Asahi Glass Foundation for
support in part.
Notes and references
1 (a) Bioactive Heterocycles I, ed. S. Eguchi, Springer, Heidelberg,
2006; (b) Heterocyclic Chemistry at a Glance, ed. J. A. Joule and
K. Mills, Blackwell, Oxford, 2007.
2 (a) Biomedicinal Aspects of Fluorine Chemistry, ed. R. Filler and
Y. Kobayashi, Elsevier Biomedical Press and Kodansya Ltd,
Amsterdam, 1982; (b) Fluorine in Bioorganic Chemistry, ed.
J. T. Welch and S. Eswarakrishnan, Wiley, New York, 1991;
(c) Organofluorine Compounds in Medicinal Chemistry and Biomedical
Applications, ed. R. Filler, Y. Kobayashi and L. M. Yagupolskii,
Elsevier, Amsterdam, 1993; (d) Fluorine Containing Amino Acids:
Synthesis and Properties, ed. V. P. Kuhar and V. A. Soloshonok,
Wiley, Chichester, UK, 1995; (e) Biomedical Frontiers of Fluorine
Chemistry, ed. I. Ojima, J. McCarthy and J. T. Welch, ACS Symp.
Series 639, The American Chemical Society, Washington, D. C., 1996.
3 (a) Fluorinated Heterocyclic Compounds: Synthesis, Chemistry, and
Applications, ed. V. A. Petrov, Wiley, Hoboken, New Jersey, 2009;
(b) Modern Fluoroorganic Chemistry, ed. P. Kirsch, Wiley-VCH,
Weinheim, 2004; (c) V. M. Muzalevskiy, A. V. Shastin, E. S.
Balenkova, G. Haufe and V. G. Nenajdenko, Synthesis, 2009,
3905; (d) A. W. Erian, J. Heterocycl. Chem., 2001, 38, 793;
(e) P. Lin and J. Jiang, Tetrahedron, 2000, 56, 3635; (f) M. J.
Silvester, Adv. Heterocycl. Chem., 1994, 59, 1; (g) J. T. Welch,
Tetrahedron, 1987, 43, 3123.
15 (a) Y.-H. Shi, Z. Wang, B. Hu, M. Wang, J. S. Fossey and
W.-P. Deng, Org. Lett., 2011, 13, 6010; (b) J. Hernandez-Toribio,
R. G. Arrayas and J. C. Carretero, Chem.–Eur. J., 2011, 17, 6334;
(c) Z.-Y. Xue, Q.-H. Li, H.-Y. Tao and C.-J. Wang, J. Am. Chem.
Soc., 2011, 133, 11757.
4 More than 29 000 compounds 2 (XQO), 15 000 compounds 2
(XQN), 12 000 compounds 2 (XQCH2) have been registered in
the SciFinder database on December, 2011.
c
3634 Chem. Commun., 2012, 48, 3632–3634
This journal is The Royal Society of Chemistry 2012