powerful and most direct approach for the stereoselective
preparation of β,γ-unsaturated R-amino acids.4 To our
knowledge, despite the fact that the strategies involving
chiral amines,4c,l chiral boronate esters,4l,m and chiral
organocatalysts4n have been employed, the results are
far from satisfactory. Excellent stereoselectivities are only
obtained in some cases of using chiral amines such as
2-phenylglycinol4e and R-methylbenzylamine;4j however,
the hydrogenolytic conditions for removal of these N-
benzylic groups also reduce the olefin functionalities lead-
ing to the corresponding saturated derivatives. From this
point of view, a practical synthesis of β,γ-unsaturated R-
amino acids via asymmetric Petasis reaction with great
stereocontrol still remains a challenge.
N-tert-Butanesulfinamide hasbeenproventobea highly
efficient chiral auxiliary in the asymmetric synthesis
of various chiral amines by virtue of its excellent diaste-
reocontrol and easy cleavage under mild conditions.5,6
In 2003, Naskar and co-workers reported the first use of
(S)-N-tert-butanesulfinamide in a Petasis reaction with
arylboronic acids to generate arylglycines, but the results
were disappointing, giving racemic diastereomers in low to
moderate yields.4k In our earlier work,6 we successfully
demonstrated the use of chiral N-tert-butanesulfinylimino
ester as a chiral glycine cation equivalent for the asymmetric
synthesis of synthetically uesful diverse amino acids such
as D-allylglycine,6g β-vinyl-R-arylalanines,6j R-(3-indolyl)-
glycines,6l R-allenylglycines,6m and R-arylglycines.6n Taking
into account these successes and the mechanistic proposal of
the Petasis reaction,4a,7 we envisaged that the possibility of
an asymmetric Petasis reaction of vinylboronic acids
with chiral N-tert-butanesulfinamide and glyoxylic acid
might be expected if a proper Lewis acid is presented in
the reaction system. The chelation of a Lewis acid with
a N-sulfinyl imine intermediate should direct the intra-
molecular transfer of a vinyl group in a highly stereo-
selective manner, thus leading to the optically active
β,γ-unsaturated R-amino acid products. Interestingly,
during the course of our studies, a recent work disclosed
that a Petasis reaction of styrenylboronic acids and
glyoxylic acid with (S)-tert-butylsulfinamide can actu-
ally proceed with high stereoselectivities (10:1À20:1 dr)
under similar Naskar4k conditions to further produce
optically active β,γ-dehydrohomoarylalanine deriva-
tives, but the reactions of alkenyl boronic acids all
showed a low degree of diastereoselectivity (85:15 and
89:11 dr).4g Herein, we report our efforts to develop an
efficient and convenient method for an asymmetric
Petasis reaction of vinylboronic acid, tert-butylsulfina-
mide, and glyoxylic acid using a Lewis acid mediated
coordination protocol. The method produces chiral
β,γ-unsaturated R-amino acid derivatives with excellent
disatereoselectivities (96À99% de) under practical
conditions.
Table 1. Screening of Lewis Acids for Diastereoselective Petasis
Reactiona
(4) (a) Candeias, N. R.; Montalbano, F.; Cal, P. M. S. D.; Gois,
P. M. P. Chem. Rev. 2010, 110, 6169. (b) Petasis, N. A. Aust. J. Chem.
€
2007, 60, 795. (c) Churches, Q. I.; Stewart, H. E.; Cohen, S. B.; Shroder,
A.; Turner, P.; Hutton, C. A. Pure Appl. Chem. 2008, 80, 687. (d)
Churches, Q. I.; Johnson, J. K.; Fifer, N. L.; Hutton, C. A. Aust. J.
Chem. 2011, 64, 62. (e) Petasis, N. A.; Zavialov, I. A. J. Am. Chem. Soc.
1997, 119, 445. (f) Jiang, B.; Xu, M. Org. Lett. 2002, 4, 4077. (g)
Churches, Q. I.; White, J. M.; Hutton, C. A. Org. Lett. 2011, 13, 2900.
(h) Shevchuk, M. V.; Sorochinsky, A. E.; Khilya, V. P.; Romanenko,
V. D.; Kukhar, V. P. Synlett 2010, 1, 73. (i) Petasis, N. A.; Patel, Z. D.
Tetrahedron Lett. 2000, 41, 9607. (j) Jiang, B.; Yang, C.-G.; Gu, X.-H.
Tetrahedron Lett. 2001, 42, 2545. (k) Naskar, D.; Roy, A.; Seibei, W. L.;
Portlock, D. E. Tetrahedron Lett. 2003, 44, 8865. (l) Southwood, T. J.;
Curry, M. C.; Hutton, C. A. Tetrahedron 2006, 62, 236. (m) Koolmeister,
time
(h)
yield
(%)b
de
entry
catalyst
(%)c
1
À
8
12
12
8
87
64
60
71
70
61
84
51
53
77
43
42
71
82
92
90
90
93
93
90
98
98
69
97
96
92
2
In(OTf)3
Yb(OTf)3
Zn(OTf)2
Cu(OTf)2
Sc(OTf)3
InCl3
3
4
5
8
6
12
8
€
T.; Sodergren, M.; Scobie, M. Tetrahedron Lett. 2002, 43, 5969. (n) Lou,
S.; Schaus, S. E. J. Am. Chem. Soc. 2008, 130, 6922.
7
8
InBr3
12
24
8
(5) (a) Robak, M. T.; Herbage, M. A.; Ellman, J. A. Chem. Rev. 2010,
ꢀ
110, 3600. (b) Ferreira, F.; Botuha, C.; Chemla, F.; Perez-Luna, A.
9
InBr3
Chem. Soc. Rev. 2009, 38, 1162. (c) Senanayake, C. H.; Krishnamurthy,
D.; Lu, Z.-H.; Han, Z.; Gallon, E. Aldrichimica Acta 2005, 38, 93.
(6) (a) Lin, G.-Q.; Xu, M.-H.; Zhong, Y.-W.; Sun, X.-W. Acc. Chem.
Res. 2008, 41, 831. (b) Zhong, Y.-W.; Xu, M.-H.; Lin, G.-Q. Org. Lett.
2004, 6, 3953. (c) Zhong, Y.-W.; Isumi, K.; Xu, M.-H.; Lin, G.-Q. Org.
Lett. 2004, 6, 4747. (d) Zhong, Y.-W.; Dong, Y.-Z.; Fang, K.; Isumi, K.;
Xu, M.-H.; Lin, G.-Q. J. Am. Chem. Soc. 2005, 127, 11956. (e) Sun,
X.-W.; Xu, M.-H.; Lin, G.-Q. Org. Lett. 2006, 8, 4979. (f) Liu, R.-H.;
Fang, K.; Wang, B.; Xu, M.-H.; Lin, G.-Q. J. Org. Chem. 2008, 73, 3307.
(g) Sun, X.-W.; Liu, M.; Xu, M.-H.; Lin, G.-Q. Org. Lett. 2008, 10, 1259.
(h) Wang, R.; Fang, K.; Sun, B.-F.; Xu, M.-H.; Lin, G.-Q. Synlett 2009,
2301. (i) Liu, M.; Sun, X.-W.; Xu, M.-H.; Lin, G.-Q. Chem.;Eur. J.
2009, 15, 10217. (j) Liu, M.; Shen, A.; Sun, X.-W.; Deng, F.; Xu, M.-H.;
Lin, G.-Q. Chem. Commun. 2010, 46, 8460. (k) Shen, A.; Liu, M.; Jia,
Z.-S.; Xu, M.-H.; Lin, G.-Q. Org. Lett. 2010, 12, 5154. (l) Ji, D.-M.; Xu,
M.-H. Chem. Commun. 2010, 46, 1550. (m) Jin, S.-S.; Xu, M.-H. Adv.
Synth. Catal. 2010, 352, 3136. (n) Li, Y.; Ji, D.-M.; Xu, M.-H. Org.
Biomol. Chem. 2011, 9, 8452.
10
11
12
13
AgCOCF3
FeCl3
24
24
8
FeBr3
FeCl2
a The reaction was performed with 10 mol % of catalyst, (E)-
styrylboronic acid 1a (0.30 mmol), (R)-N-tert-butanesulfinamide 2
(0.25 mmol), and glyoxylic acid 3 (0.25 mmol) in dry CH2Cl2 (1 mL)
at room temperature. b Isolated yield. c The diastereoselectivity of the
product was determined by LC-MS analysis.
Our initial investigation commenced with the reaction
of (E)-styrylboronic acid 1a with (R)-N-tert-butanesulfi-
namide 2 and glyoxylic acid 3 in CH2Cl2 at ambient
temperature (Table 1). In the absence of any Lewis acid
catalyst, the reaction can proceed well and afford the
(7) (a) Schlienger, N.; Bryce, M. R.; Hansen, T. K. Tetrahedron 2000,
ꢀ
56, 10023. (b) Candeias, N. R.; Cal, P. M. S. D.; Andre, V.; Duarte, T.;
Veiros, L.; Gois, P. M. P. Tetrahedron 2010, 66, 2736.
Org. Lett., Vol. 14, No. 8, 2012
2063