2 See for example: (a) T. Imamoto, Y. Saitoh, A. Koide, T. Ogura
and K. Yoshida, Angew. Chem., Int. Ed., 2007, 46, 8636;
(b) C. A. Busacca, E. Farber, J. DeYoung, S. Campbell,
S. Gonella, N. Grinberg, N. Haddad, H. Lee, S. Ma, D. Reeves,
S. Shen and C. H. Senanayake, Org. Lett., 2009, 11, 5594;
(c) R. J. Detz, S. Arevalo Heras, R. de Gelder, P. W. N. M.
´
Scheme 3 Catalytic activity of complexes 4 in Csp–P bond formation.
van Leeuwen, H. Hiemstra, J. N. H. Reek and J. H. van Maarseveen,
Org. Lett., 2006, 8, 3227; (d) B. Mohr, D. M. Lynn and R. H. Grubbs,
Organometallics, 1996, 15, 4317.
3 G. B. Consiglio, P. Queval, A. Harrison-Marchand, A. Mordini,
´
J.-F. Lohier, O. Delacroix, A.-C. Gaumont, H. Gerard,
J. Maddaluno and H. Oulyadi, J. Am. Chem. Soc., 2011, 133, 6472.
4 Selected examples: (a) T. I. Kuckmann, F. Dornhaus, M. Bolte,
H.-W. Lerner, M. C. Holthausen and M. Wagner, Eur. J. Inorg.
Chem., 2007, 1989; (b) D. A. Hoic, W. M. Davis and G. C. Fu,
J. Am. Chem. Soc., 1996, 118, 8176; (c) W. Angerer,
W. S. Sheldrick and W. Malisch, Chem. Ber., 1985, 118, 1261.
5 (a) T. Imamoto, T. Oshiki, T. Onozawa, T. Kusumoto and
K. Sato, J. Am. Chem. Soc., 1990, 112, 5244; (b) D. Julienne,
J.-F. Lohier, O. Delacroix and A.-C. Gaumont, J. Org. Chem,
2007, 72, 2247; (c) H. Vallette, S. Pican, C. Boudou, J. Levillain,
J. C. Plaquevent and A.-C. Gaumont, Tetrahedron Lett., 2006,
47, 5191.
to display stronger s-donor properties according to the frontier
MO analysis.
Next the ability of complex 4a to act as a catalyst was
tested in the reaction between diphenylphosphine borane 1
and 1-bromohexyne 5 (Scheme 3). Gratifyingly, the use of
10 mol% of 4a allowed a full conversion to be reached at room
temperature, and afforded alkynylphosphine borane 6 as the
sole product in 80% isolated yield.
Similar results were obtained with 4b. This result suggests
that copper–phosphido-borane complex 4a may be an inter-
mediate in the phosphination of alkynyl bromides or may lead
to such an intermediate.
6 (a) D. S. Glueck, Chem.–Eur. J., 2008, 14, 7108; (b) D. S. Glueck,
Synlett, 2007, 2627 and references cited therein; (c) A.-C.
Gaumont, M. B. Hursthouse, S. J. Coles and J. M. Brown, Chem.
Commun., 1999, 63; (d) S. Pican and A.-C. Gaumont, Chem.
Commun., 2005, 2393; (e) D. Julienne, O. Delacroix, J.-F. Lohier,
J. Sopkova de Oliveira-Santos and A.-C. Gaumont, Eur. J. Inorg.
Chem., 2011, 2489.
7 For phosphines as coupling partners, see: (a) D. Gelman, L. Jiang
and S. L. Buchwald, Org. Lett., 2003, 5, 2315; (b) D. Van Allen and
D. Venkataraman, J. Org. Chem., 2003, 68, 4590; (c) K. Tani,
D. C. Behenna, R. M. McFadden and B. M. Stoltz, Org. Lett.,
2007, 9, 2529.
The relative chemical reactivity of the Cu–P1 and Cu–P2
bonds was further theoretically investigated using Fukui indices.
The Fukui function was introduced by Parr and Yang as the
response of the electron density of the molecular system to a
change in the global number of electrons.19 The sensitivity of the
copper complex 4a towards electrophilic attack, such as that of
an alkynyl halide, was investigated using Fukui fÀ functions
condensed on ELF or AIM basins.20 The largest value is
obtained for the Cu–phosphido-borane bond (fÀ
= 0.22)
ELF
that is therefore expected to be the most reactive with a
bromoalkyne (see Fig. S5, ESIw). A sizeable value (fÀELF = 0.14)
is also calculated for the metallic centre and for the P–B bond
8 E. Bernoud, C. Alayrac, O. Delacroix and A.-C. Gaumont, Chem.
Commun., 2011, 47, 3239.
9 (a) S. Zhang and Y. Ding, Organometallics, 2011, 30,
633; (b) G. Franc, Q. Cacciuttolo, G. Lefevre, C. Adamo,
I. Ciofini and A. Jutand, ChemCatChem, 2011, 3, 305; (c) S.-L.
Zhang, L. Liu, Y. Fu and Q.-X. Guo, Organometallics, 2007,
26, 4546.
10 (a) J. W. Tye, Z. Weng, R. Giri and J. F. Hartwig, Angew. Chem.,
Int. Ed., 2010, 49, 2185; (b) J. W. Tye, Z. Weng, A. M. Johns,
C. D. Incarvito and J. F. Hartwig, J. Am. Chem. Soc., 2008,
130, 9971.
(fÀ
= 0.12), while the Cu–P1 bond (fÀ
= 0.03) is
ELF
ELF
predicted to be insensitive to the electrophilic attack of the alkynyl
halide. This theoretical result is in good agreement with the
selective formation of 6 from the reaction of bromoalkyne 5 with
phosphine 1 catalyzed by complex 4b bearing a diethylphosphine
ligand (Scheme 3).
11 (a) G. O. Jones, P. Liu, K. N. Houk and S. L. Buchwald, J. Am.
Chem. Soc., 2010, 132, 6205; (b) E. R. Strieter, B. Bhayana and
S. L. Buchwald, J. Am. Chem. Soc., 2009, 131, 78; (c) E. R. Strieter,
D. G. Blackmond and S. L. Buchwald, J. Am. Chem. Soc., 2005,
127, 4120.
12 M. F. Cain, R. P. Hughes, D. S. Glueck, J. A. Golen, C. E. Moore
and A. L. Rheingold, Inorg. Chem., 2010, 49, 7650.
13 See, for example: (a) S. I. M. Paris, J. L. Petersen, E. Hey-Hawkins
and M. P. Jensen, Inorg. Chem., 2006, 45, 5561; (b) M. Itazaki,
Y. Nishihara and K. Osakada, Transition Met. Chem., 2005,
30, 828.
14 R. K. Gujadhur, C. G. Bates and D. Venkataraman, Org. Lett.,
2001, 3, 4315.
15 (a) A. D. Becke and K. E. Edgecombe, J. Chem. Phys., 1990,
92, 5379; (b) B. Silvi and A. Savin, Nature, 1994, 371, 683.
16 R. F. W. Bader, Atoms in Molecules, Clarendon Press, Oxford,
1990.
17 (a) I. Abdellah, C. Lepetit, Y. Canac, C. Duhayon and R. Chauvin,
Chem.–Eur. J., 2010, 16, 13095; (b) R. Zurawinski, C. Lepetit,
Y. Canac, M. Mikolajczyk and R. Chauvin, Inorg. Chem., 2009,
48, 2147.
18 (a) M. L. H. Green, J. Organomet. Chem., 1995, 500, 127;
(b) Y. Canac, C. Lepetit and R. Chauvin, Top. Organomet. Chem.,
2010, 30, 1.
In conclusion, we described the first examples of isolable
neutral copper phosphido-borane complexes, which clearly
take advantage of the stabilization provided by the phosphine
ligand. These unprecedented well-defined copper(I) complexes
were fully characterized spectroscopically and by X-ray analysis.
Additional structural information was provided by theoretical
calculations. Finally experimental studies demonstrated that
copper–phosphido-borane complexes 4 were able to catalyze
the P-alkynylation reaction of secondary phosphine-boranes.
Further studies will focus on the mechanism of this reaction.
This work was supported by CNRS and Crunch (interregional
organic chemistry network). The ‘‘Region Basse-Normandie’’ and
´
ERDF funding (ISCE-Chem & INTERREG IVa program) are
gratefully thanked for financial support. COST ACTION CM0802
‘‘PHOSCINET’’ is also acknowledged for support. The computa-
tional studies were performed using HPC resources from CALMIP
(Grant 2011 [0851]), and from GENCI-[CINES/IDRIS]
(Grant 2011 [085008]).
19 R. G. Parr and W. Yang, J. Am. Chem. Soc., 1984, 106, 4049.
20 (a) F. A. Bulat, E. Chamorro, P. Fuentealba and A. Toro-Labbe,
´
Notes and references
1 Selected examples: (a) F. Dornhaus, M. Bolte, H.-W. Lerner and
M. Wagner, Eur. J. Inorg. Chem., 2006, 1777 and references cited
J. Phys. Chem., 2004, 108, 342; (b) W. Tiznado, E. Chamorro,
R. Contreras and P. Fuentealba, J. Phys. Chem., 2005, 109,
3220.
therein; (b) G. Muller and J. Brand, Organometallics, 2003, 22, 1463.
¨
c
4090 Chem. Commun., 2012, 48, 4088–4090
This journal is The Royal Society of Chemistry 2012