Organometallics
Article
(h) Crossley, I. R.; Hill, A. F.; Willis, A. C. Organometallics 2006, 25,
289. (i) Crossley, I. R.; Hill, A. F.; Willis, A. C. Organometallics 2007,
26, 3891. (j) Crossley, I. R.; Hill, A. F.; Willis, A. C. Organometallics
2008, 27, 312. (k) Crossley, I. R.; Foreman, M. R. St.-J.; Hill, A. F.;
Owen, G. R.; White, A. J. P.; Williams, D. J.; Willis, A. C.
Organometallics 2008, 27, 381. (l) Crossley, I. R.; Hill, A. F. Dalton
Trans. 2008, 201. (m) Crossley, I. R.; Hill, A. F.; Willis, A. C.
Organometallics 2010, 29, 326.
Table 2. Hybridization of NLMO Involving the Rh and B
Atoms and NLMO/NPA Bond Orders28
1
4
5
NLMO d(Rh)→p(B)
% d(Rh)
% p(B)
76.21
19.14
86.19
11.84
56.69
30.36
Donor NBO d(Rh)
(4) (a) Mihalcik, D. J.; White, J. L.; Tanski, J. M.; Zakharov, L. N.;
Yap, G. P. A.; Incarvito, C. D.; Rheingold, A. L.; Rabinovitch, D.
Dalton Trans. 2004, 1626. (b) Landry, V. K.; Melnick, J. G.; Buccella,
D.; Pang, K.; Ulichny, J. C.; Parkin, G. Inorg. Chem. 2006, 45, 2588.
(c) Figueroa, J. S.; Melnick, J. G.; Parkin, G. Inorg. Chem. 2006, 45,
7056. (d) Blagg, R. J.; Charmant, J. P. H.; Connelly, N. G.; Haddow,
M. F.; Orpen, A. G. Chem. Commun. 2006, 2350. (e) Senda, S.; Ohki,
Y.; Hirayama, T.; Toda, D.; Chen, J.-L.; Matsumoto, T.; Kawaguchi,
H.; Tatsumi, K. Inorg. Chem. 2006, 45, 9914. (f) Pang, K.; Quan, S. M.;
Parkin, G. Chem. Commun. 2006, 5015. (g) Pang, K.; Tanski, J. M.;
Parkin, G. Chem. Commun. 2008, 1008.
(5) (a) Bontemps, S.; Gornitzka, H.; Bouhadir, G.; Miqueu, K.;
Bourissou, D. Angew. Chem., Int. Ed. 2006, 45, 1611. (b) Bontemps, S.;
Bouhadir, G.; Miqueu, K.; Bourissou, D. J. Am. Chem. Soc. 2006, 128,
12056. (c) Sircoglou, M.; Bontemps, S.; Mercy, M.; Saffon, N.;
Takahashi, M.; Bouhadir, G.; Maron, L.; Bourissou, D. Angew. Chem.,
Int. Ed. 2007, 46, 8583. (d) Bontemps, S.; Sircoglou, M.; Bouhadir, G.;
Puschmann, H.; Howard, J. A. K.; Dyer, P. W.; Miqueu, K.; Bourissou,
D. Chem. Eur. J. 2008, 14, 731. (e) Bontemps, S.; Bouhadir, G.; Gu,
W.; Mercy, M.; Chen, C.-H.; Foxman, B. M.; Maron, L.; Bourissou, D.
Angew. Chem., Int. Ed. 2008, 47, 1481. (f) Sircoglou, M.; Bontemps, S.;
Bouhadir, G.; Saffon, N.; Miqueu, K.; Gu, W.; Mercy, M.; Chen, C.-H.;
Foxman, B. M.; Maron, L.; Ozerov, O. V.; Bourissou, D. J. Am. Chem.
Soc. 2008, 130, 16729. (g) Sircoglou, M.; Bontemps, S.; Mercy, M.;
Miqueu, K.; Ladeira, S.; Saffon, N.; Maron, L.; Bouhadir, G.;
Bourissou, D. Inorg. Chem. 2010, 49, 3983.
% s(Rh)
% p(Rh)
% d(Rh)
0.23
8.14
91.62
1.83
2.34
0.43
21.31
76.35
97.74
Acceptor NBO p(B)
% s(B)
% p(B)
18.80
81.19
11.08
88.86
20.05
79.95
Rh−B Bond Order
0.571 0.443
0.582
ASSOCIATED CONTENT
■
S
* Supporting Information
Tables, figures, and CIF files giving bond lengths and angles,
structure refinement details, and ORTEP drawings of 3, 1, 4, 6,
7, 8, and 9 and details of the DFT calculations. This material is
AUTHOR INFORMATION
■
Corresponding Author
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
(6) (a) Tsoureas, N.; Haddow, M. F.; Hamilton, A.; Owen, G. R.
Chem. Commun. 2009, 2538. (b) Tsoureas, N.; Bevis, T.; Butts, C. P.;
Hamilton, A.; Owen, G. R. Organometallics 2009, 28, 5222.
(7) (a) Moret, M.-E.; Peters, J. C. Angew. Chem., Int. Ed. 2011, 50,
2063. (b) Moret, M.-E.; Peters, J. C. J. Am. Chem. Soc. 2011, 133,
18118.
The present research was supported by a Challenging
Exploratory Research grant (No. 23655056) and a Grant-in-
Aid for Young Scientists(B) (No. 23750064) from Japan
Society of the Promotion of Science. H.K. acknowledges
financial support from the Sasakawa Scientific Research Grant
from the Japan Science Society. Finally, we thank Prof. A. F.
Hill, Prof. G. Parkin, and Prof. D. Bourissou for attracting our
attention to this field.
(8) Bontemps, S.; Bouadir, G.; Dyer, P. W.; Miqueu, K.; Bourissou,
D. Inorg. Chem. 2007, 46, 5149.
(9) The low-temperature fluxionality of compounds 1 and 8 is
somewhat unexpected for octahedral complexes, and a possible
explanation would be transient migration of the hydride to the boron
atom to form a hydrogenoborate ligand (R3BH−). Related hydride
migrations are known; see for example: Tsoureas, N.; Kuo, Y.-Y.;
Haddow, M. F.; Owen, G. R. Chem. Commun. 2011, 484.
(10) Unlike Bourissou’s isopropyl analogue, in which the boron is
pyramidalized owing to the presence of an intramolecular P→B
interaction, compound 3 has planar boron (∑(C−B−C) = 357.2°).
This difference probably originates from the lower electron-donating
ability of the aromatic phosphine.
(11) Covalent radius: Rh, 134 pm; B, 88 pm: Atkins, P. W.; Overton,
T.; Rourke, J.; Weller, M.; Armstrong, F. Shriver and Atkins Inorganic
Chemistry, 4th ed.; Oxford University Press: New York, 2006; p 24.
(12) We checked 1943 rhodium complexes with a carbonyl ligand in
a terminal configuration via the Cambridge Structural database
(version 5.32) and found that only six complexes have a longer
Rh−CO bond (over 1.960 Å) than complex 1. Recently, Owen
reported an interesting explanation on the very large trans influence
observed in the octahedral system.1f
(13) Density functional theory (DFT) calculations were carried out
at the B3PW9116/(Rh, SDD;17 H, C, B, O, P, 6-31G*) level of theory.
To confirm that the aforementioned basis sets were able to reproduce
the geometry of the anionic complex 5, the geometry of anionic
complex 9, which is similar to that of 5 (whose structure was
accurately characterized by X-ray diffraction studies), was optimized.
This optimized geometry, shown in Figure S15 (Supporting
REFERENCES
■
(1) (a) Green, M. L. H. J. Organomtet. Chem. 1995, 500, 127.
(b) Hill, A. F. Organometallics 2006, 25, 4741. (c) Parkin, G.
Organometallics 2006, 25, 4744. (d) Braunschweig, H.; Kollann, C.;
Rais, D. Angew. Chem., Int. Ed. 2006, 45, 5254. (e) Parkin, G. In
Comprehensive Organometallic Chemistry III; Crabtree, R. H., Mingos,
D. M. P., Eds.; Elsevier: Oxford, U.K., 2006; Vol. 1, Chapter 1.
(f) Owen, G. R. Transition Met. Chem. 2010, 35, 221. (g) Braunsch-
weig, H.; Dewhurst, R. D.; Schneider, A. Chem. Rev. 2010, 110, 3924.
(h) Braunschweig, H.; Dewhurst, R. D. Dalton Trans. 2011, 40, 549.
(i) Amgoune, A.; Bourissou, D. Chem. Commun. 2011, 47, 859.
(2) Hill, A. F.; Owen, G. R.; White, A. J. P.; Williams, D. J. Angew.
Chem., Int. Ed. 1999, 38, 2759.
(3) (a) Foreman, M. R. St.-J.; Hill, A. F.; Owen, G. R.; White, A. J. P.;
Williams, D. J. Organometallics 2003, 22, 4446. (b) Foreman, M. R. St.-
J.; Hill, A. F.; White, A. J. P.; Williams, D. J. Organometallics 2004, 23,
913. (c) Foreman, M. R. St.-J.; Hill, A. F.; White, A. J. P.; Williams, D.
J. Organometallics 2004, 23, 5656. (d) Mihalcik, D. J.; White, J. L.;
Tanski, J. M.; Zakharov, L. N.; Yap, G. P. A; Incarvito, C. D.;
Rheingold, A. L.; Rabinovitch, D. Dalton Trans. 2004, 1626.
(e) Crossley, I. R.; Foreman, M. R. St.-J.; Hill, A. F.; White, A. J. P.;
Williams, D. J. Chem. Commun. 2005, 221. (f) Crossley, I. R.; Hill, A.
F.; Wills, A. C. Organometallics 2005, 24, 1062. (g) Crossley, I. R.; Hill,
A. F.; Humphrey, E. R.; Wills, A. C. Organometallics 2005, 24, 4083.
3161
dx.doi.org/10.1021/om3000423 | Organometallics 2012, 31, 3155−3162