M. Hofer, C. Nevado
SHORT COMMUNICATION
cis-[Au(C6F5)(PPh3)Cl2] (2): To a mixture of [Au(C6F5)(PPh3)] (1,
37.6 mg, 0.06 mmol) and iodobenzene dichloride (18.1 mg,
0.066 mmol) was added CCl4 (3.8 mL). The mixture was stirred at
room temperature for 1 h. The solvent was evaporated under re-
duced pressure to ca. 0.2 mL, and the product was precipitated by
the addition of hexane. The product was separated to give 2 as a
white solid. Yield: 93% (39.0 mg, 0.056 mmol). 1H NMR
(400 MHz, CD2Cl2): δ = 7.72–7.36 (m, 15 H) ppm. 13C NMR
(125 MHz, CD2Cl2): δ = 143.7 (dm, J = 235.0 Hz), 140.4 (dm, J =
244.0 Hz), 138.0 (dm, J = 240.0 Hz), 134.9 (d, J = 10.7 Hz), 134.2
(d, J = 3.0 Hz), 129.8 (d, J = 12.5 Hz), 123.7 (d, J = 69.8 Hz)
ppm. 31P NMR (162 MHz, CD2Cl2): δ = 35.64 (s) ppm. 19F NMR
(376 MHz, CD2Cl2): δ = –123.48 to –124.35 (m), –156.90 (t, J =
19.8 Hz), –159.92 to –160.91 (m) ppm. MS (EI): m/z = 626.0 [M –
Cl2]+.
[1]
a) M. N. Hopkinson, A. D. Gee, V. Gouverneur, Chem. Eur. J.
2011, 17, 8248–8262; b) H. A. Wegner, M. Auzias, Angew.
Chem. Int. Ed. 2011, 50, 8236–8247; c) M. Rudolph, A. K. S.
Hashmi, Chem. Commun. 2011, 47, 6536–6544.
[2] M. A. Bennett, D. C. R. Hockless, A. D. Rae, L. L. Welling,
A. C. Willis, Organometallics 2001, 20, 79–87.
[3] F. Zamora, P. Amo-Ochoa, B. Fischer, A. Schimanski, B. Lip-
pert, Angew. Chem. 1999, 111, 2415; Angew. Chem. Int. Ed.
1999, 38, 2274–2275.
[4] a) A. K. S. Hashmi, M. C. Blanco, D. Fischer, J. W. Bats, Eur.
J. Org. Chem. 2006, 1387–1389; b) A. S. K. Hashmi, T. D. Ra-
mamurthi, F. Rominger, J. Organomet. Chem. 2009, 694, 592–
597; c) A. S. K. Hashmi, T. D. Ramamurthi, M. H. Todd,
A. S.-K. Tsang, K. Graf, Aust. J. Chem. 2010, 63, 1619–1626.
[5] a) H. A. Wegner, S. Ahles, M. Neuburger, Chem. Eur. J. 2008,
14, 11310–11313; b) M. Auzias, M. Neuburger, H. A. Wegner,
Synlett 2010, 16, 2443–2448.
cis-[Au(C6F5)2Cl(PPh3)] (3): To
a mixture of 1 (12.5 mg,
0.02 mmol) and iodobenzene diacetate (7.0 mg, 0.022 mmol) was
added 1,2-dichloroethane (2.5 mL). The mixture was heated at
93 °C for 3–4.5 h. The reaction was monitored by TLC using hex-
ane/CH2Cl2 (1:1) as the mobile phase. The solvent was evaporated
under reduced pressure, and the crude product was purified by col-
umn chromatography (hexane/CH2Cl2, 1:4) to give 3 as a white
solid. Yield: 38% (2.8 mg, 0.0034 mmol). 1H NMR (400 MHz,
CD2Cl2): δ = 7.63–7.40 (m, 15 H) ppm. 13C NMR (125 MHz,
CD2Cl2): δ = 145.0 (dm, J = 235.0 Hz), 143.5 (dm, J = 236.0 Hz),
139.8 (dm, J = 250.0 Hz), 137.6 (dm, J = 252.0 Hz), 134.3 (d, J =
10.5 Hz), 132.7 (d, J = 3.0 Hz), 129.2 (d, J = 12.0 Hz), 124.3 (d, J
= 59.8 Hz), 117.5 (dt, J = 150.0, 43.0 Hz), 109.9 (t, J = 39.0 Hz)
ppm. 31P NMR (162 MHz, CD2Cl2): δ = 28.30 (t, J = 12.3 Hz)
ppm. 19F NMR (376 MHz, CD2Cl2): δ = –122.07 to –122.46 (m),
–122.99 to –123.59 (m), –157.31 (t, J = 19.8 Hz), –157.58 (t, J =
19.8 Hz), –160.70 to –161.02 (m), –161.71 to –162.08 (m) ppm. MS
(EI): m/z = 625.9 [M – C6F5Cl]+.
[6] a) A. Kar, N. Mangu, H. M. Kaiser, M. Beller, M. K. Tse,
Chem. Commun. 2008, 386–388; b) A. Kar, N. Mangu, H. M.
Kaiser, M. K. Tse, J. Organomet. Chem. 2009, 694, 524–537.
[7] L. Cui, G. Zhang, L. Zhang, Bioorg. Med. Chem. Lett. 2009,
19, 3884–3887.
[8] a) T. de Haro, C. Nevado, J. Am. Chem. Soc. 2010, 132, 1512–
1513; b) J. P. Brand, J. Charpentier, J. Waser, Angew. Chem.
2009, 121, 9510; Angew. Chem. Int. Ed. 2009, 48, 9346–9349;
c) J. P. Brand, J. Waser, Angew. Chem. Int. Ed. 2010, 49, 7304–
7307; d) M. N. Hopkinson, J. E. Ross, G. T. Giuffredi, A. D.
Gee, V. Gouverneur, Org. Lett. 2010, 12, 4904–4907.
[9] a) A. Iglesias, K. Muñiz, Chem. Eur. J. 2009, 15, 10563–10569;
b) T. de Haro, C. Nevado, Angew. Chem. Int. Ed. 2011, 50,
906–910; c) M. N. Hopkinson, A. Tessier, A. Salisbury, G. T.
Giuffredi, L. E. Combettes, A. D. Gee, V. Gouverneur, Chem.
Eur. J. 2010, 16, 4739–4743.
[10] a) G. Zhang, Y. Peng, L. Cui, L. Zhang, Angew. Chem. 2009,
121, 3158; Angew. Chem. Int. Ed. 2009, 48, 3112–3115; b) G.
Zhang, L. Cui, Y. Wang, L. Zhang, J. Am. Chem. Soc. 2010,
132, 1474–1475; c) W. E. Brenzovich, D. Benitez, A. D.
Lackner, H. P. Shunatona, E. Tkatchouk, W. A. Goddard,
F. D. Toste, Angew. Chem. Int. Ed. 2010, 49, 5519–5522; d)
W. E. Brenzovich, J.-F. Brazeau, F. D. Toste, Org. Lett. 2010,
12, 4728–4731; e) L. T. Ball, M. Green, G. C. Lloyd-Jones, A.
Russell, Org. Lett. 2010, 12, 4724–4727.
[Au(PPh3)2][Au(C6F5)4] (7): To a mixture of 1 (50.1 mg, 0.08 mmol)
and Selectfluor® (62.3 mg, 0.18 mmol) was added 1,2-dichloro-
ethane (5.0 mL). The mixture was heated at 93 °C for 64 h. The
solvent was evaporated under reduced pressure, and the crude
product was purified by column chromatography (hexane/CH2Cl2,
1:4) to give 7 as a white solid. Yield: 25% (8.1 mg, 0.005 mmol).
1H NMR (400 MHz, CD2Cl2): δ = 7.66–7.42 (m, 30 H) ppm. 13C
NMR (126 MHz, CD2Cl2): δ = 145.8 (ddm, J = 235.0, 18.0 Hz),
138.3 (dtm, J = 245.0, 14.0 Hz), 137.0 (dm, J = 250.0 Hz), 134.1
(t, J = 7.5 Hz), 132.8 (s), 129.9 (t, J = 5.8 Hz), 127.1 (t, J =
30.0 Hz), 116.0 (t, J = 48.0 Hz) ppm. 31P NMR (162 MHz,
CD2Cl2): δ = 46.01 (s) ppm. 19F NMR (376 MHz, CD2Cl2): δ =
–121.66 (d, J = 19.1 Hz), –161.57 (t, J = 19.8 Hz), –164.05 to
–164.57 (m) ppm. MS (ESI+, CHCl3/MeOH, 4:6): m/z = 721.4
[M]+. MS (ESI–, CHCl3/MeOH, 4:6): m/z = 865.1 [M]–.
[11]
a) T. S. Teets, D. G. Nocera, J. Am. Chem. Soc. 2009, 131,
7411–7420; b) D. Schneider, A. Schier, H. Schmidbaur, Dalton
Trans. 2004, 1995–2005; c) D. Schneider, O. Schuster, H.
Schmidbaur, Dalton Trans. 2005, 1940–1947; d) G. Yang, R. G.
Raptis, J. Chem. Soc., Dalton Trans. 2002, 3936–3938.
a) R. Usón, A. Laguna, J. Pardo, Synth. React. Inorg. Met.-
Org. Chem. 1974, 4, 499–513; b) L. G. Vaughan, W. A. Shep-
pard, J. Am. Chem. Soc. 1969, 91, 6151–6156.
[12]
[13]
a) R. S. Nyholm, P. Royo, J. Chem. Soc. C 1969, 421; b) R.
Usón, P. Royo, A. Laguna, J. Organomet. Chem. 1974, 69, 361–
365.
CCDC-843007 (for 2), -842899 (for 3), and -851182 (for 7) contain
the supplementary crystallographic data for this paper. These data
can be obtained free of charge from The Cambridge Crystallo-
graphic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
[14]
[15]
a) V. V. Zhdankin, ARKIVOC (Gainesville, FL, U.S.) 2009, 1–
62; b) R. M. Moriarty, J. Org. Chem. 2005, 70, 2893–2903.
P. T. Nyffeler, S. Gonzalez-Durón, M. D. Burkart, S. P. Vin-
cent, C.-H. Wong, Angew. Chem. 2005, 117, 196–217; Angew.
Chem. Int. Ed. 2005, 44, 192–212.
M. Pazˇický, A. Loos, M. J. Ferreira, D. Serra, N. Vinokurov,
F. Rominger, C. Jakel, A. S. K. Hashmi, M. Limbach, Organo-
metallics 2010, 29, 4448–4458.
a) N. R. Deprez, M. S. Sanford, Inorg. Chem. 2007, 46, 1924–
1935; b) J. M. Racowski, A. R. Dick, M. S. Sanford, J. Am.
Chem. Soc. 2009, 131, 10974–10983.
A. Laguna, P. Royo, R. Usón, Rev. Acad. Cienc. Zaragoza 1972,
27, 19–74.
Supporting Information (see footnote on the first page of this arti-
cle): Characterization of 2, 3, and 7 and data for the oxidation of
1.
[16]
[17]
[18]
Acknowledgments
The Organic Chemistry Institute of the University of Zürich is ac-
knowledged for its continuous support of our research. We thank
Dr. A. Linden for the X-ray crystal structure determination of 2,
3, and 7.
[19]
[20]
R. W. Baker, P. Pauling, J. Chem. Soc. C 1969, 745.
Relevant 1H, 31P, and 19F NMR spectra are available in the
Supporting Information.
1340
www.eurjic.org
© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Inorg. Chem. 2012, 1338–1341